986 resultados para Left ventricular hypertrophy
Resumo:
AIMS The aim of our study in patients with coronary artery disease (CAD) and present, or absent, myocardial ischaemia during coronary occlusion was to test whether (i) left ventricular (LV) filling pressure is influenced by the collateral circulation and, on the other hand, that (ii) its resistance to flow is directly associated with LV filling pressure. METHODS AND RESULTS In 50 patients with CAD, the following parameters were obtained before and during a 60 s balloon occlusion: LV, aortic (Pao) and coronary pressure (Poccl), flow velocity (Voccl), central venous pressure (CVP), and coronary flow velocity after coronary angioplasty (V(Ø-occl)). The following variables were determined and analysed at 10 s intervals during occlusion, and at 60 s of occlusion: LV end-diastolic pressure (LVEDP), velocity-derived (CFIv) and pressure-derived collateral flow index (CFIp), coronary collateral (Rcoll), and peripheral resistance index to flow (Rperiph). Patients with ECG signs of ischaemia during coronary occlusion (insufficient collaterals, n = 33) had higher values of LVEDP over the entire course of occlusion than those without ECG signs of ischaemia during occlusion (sufficient collaterals, n = 17). Despite no ischaemia in the latter, there was an increase in LVEDP from 20 to 60 s of occlusion. In patients with insufficient collaterals, CFIv decreased and CFIp increased during occlusion. Beyond an occlusive LVEDP > 27 mmHg, Rcoll and Rperiph increased as a function of LVEDP. CONCLUSION Recruitable collaterals are reciprocally tied to LV filling pressure during occlusion. If poorly developed, they affect it via myocardial ischaemia; if well grown, LV filling pressure still increases gradually during occlusion despite the absence of ischaemia indicating transmission of collateral perfusion pressure to the LV. With low, but not high, collateral flow, resistance to collateral as well as coronary peripheral flow is related to LV filling pressure in the high range.
Resumo:
AIM To determine the relation between the extent and distribution of left ventricular hypertrophy and the degree of disturbance of regional relaxation and global left ventricular filling. METHODS Regional wall thickness (rWT) was measured in eight myocardial regions in 17 patients with hypertrophic cardiomyopathy, 12 patients with hypertensive heart disease, and 10 age matched normal subjects, and an asymmetry index calculated. Regional relaxation was assessed in these eight regions using regional isovolumetric relaxation time (rIVRT) and early to late peak filling velocity ratio (rE/A) derived from Doppler tissue imaging. Asynchrony of rIVRT was calculated. Doppler left ventricular filling indices were assessed using the isovolumetric relaxation time, the deceleration time of early diastolic filling (E-DT), and the E/A ratio. RESULTS There was a correlation between rWT and both rIVRT and rE/A in the two types of heart disease (hypertrophic cardiomyopathy: r = 0.47, p < 0.0001 for rIVRT; r = -0.20, p < 0.05 for rE/A; hypertensive heart disease: r = 0.21, p < 0.05 for rIVRT; r = -0.30, p = 0.003 for rE/A). The degree of left ventricular asymmetry was related to prolonged E-DT (r = 0. 50, p = 0.001) and increased asynchrony (r = 0.42, p = 0.002) in all patients combined, but not within individual groups. Asynchrony itself was associated with decreased E/A (r = -0.39, p = 0.01) and protracted E-DT (r = 0.69, p < 0.0001) and isovolumetric relaxation time (r = 0.51, p = 0.001) in all patients. These correlations were still significant for E-DT in hypertrophic cardiomyopathy (r = 0.56, p = 0.02) and hypertensive heart disease (r = 0.59, p < 0.05) and for isovolumetric relaxation time in non-obstructive hypertrophic cardiomyopathy (n = 8, r = 0.87, p = 0.005). CONCLUSIONS Non-invasive ultrasonographic examination of the left ventricle shows that in both hypertrophic cardiomyopathy and hypertensive heart disease, the local extent of left ventricular hypertrophy is associated with regional left ventricular relaxation abnormalities. Asymmetrical distribution of left ventricular hypertrophy is indirectly related to global left ventricular early filling abnormalities through regional asynchrony of left ventricular relaxation.
Resumo:
The current article presents a novel physiological control algorithm for ventricular assist devices (VADs), which is inspired by the preload recruitable stroke work. This controller adapts the hydraulic power output of the VAD to the end-diastolic volume of the left ventricle. We tested this controller on a hybrid mock circulation where the left ventricular volume (LVV) is known, i.e., the problem of measuring the LVV is not addressed in the current article. Experiments were conducted to compare the response of the controller with the physiological and with the pathological circulation, with and without VAD support. A sensitivity analysis was performed to analyze the influence of the controller parameters and the influence of the quality of the LVV signal on the performance of the control algorithm. The results show that the controller induces a response similar to the physiological circulation and effectively prevents over- and underpumping, i.e., ventricular suction and backflow from the aorta to the left ventricle, respectively. The same results are obtained in the case of a disturbed LVV signal. The results presented in the current article motivate the development of a robust, long-term stable sensor to measure the LVV.
Resumo:
Recent outstanding clinical advances with new mechanical circulatory systems have led to additional strategies in the treatment of end-stage heart failure. Heart transplantation can be postponed and for certain patients even replaced by smaller implantable left ventricular assist devices (LVADs). Mechanical support of the failing left ventricle enables appropriate haemodynamic stabilization and recovery of secondary organ failure, often seen in these severely ill patients. These new devices may be of great help to bridge patients until a suitable cardiac allograft is available but are also discussed as definitive treatment for patients who do not qualify for transplantation. Main indications for LVAD implantation are bridge to recovery, bridge to transplantation or destination therapy. An LVAD may be an important tool for patients with an expected prolonged period on the waiting list, for instance those with blood group O or B, with high or low body weight and those with potentially reversible secondary organ failure and pulmonary artery hypertension. However, LVAD implantation means an additional heart operation with inherent perioperative risks and complications during the waiting period. Finally, cardiac transplantation in patients with prior implantation of an LVAD represents a surgical challenge. The care of patients after the implantation of miniaturized LVADs, such as the HeartWare® system, seems to be easier than following pulsatile devices. The explantation of such devices at the time of transplantation is technically more comfortable than after HeartMate II implantation.
Resumo:
BACKGROUND Intracoronary administration of autologous bone marrow-derived mononuclear cells (BM-MNC) may improve remodeling of the left ventricle (LV) after acute myocardial infarction. The optimal time point of administration of BM-MNC is still uncertain and has rarely been addressed prospectively in randomized clinical trials. METHODS AND RESULTS In a multicenter study, we randomized 200 patients with large, successfully reperfused ST-segment elevation myocardial infarction in a 1:1:1 pattern into an open-labeled control and 2 BM-MNC treatment groups. In the BM-MNC groups, cells were administered either early (i.e., 5 to 7 days) or late (i.e., 3 to 4 weeks) after acute myocardial infarction. Cardiac magnetic resonance imaging was performed at baseline and after 4 months. The primary end point was the change from baseline to 4 months in global LV ejection fraction between the 2 treatment groups and the control group. The absolute change in LV ejection fraction from baseline to 4 months was -0.4±8.8% (mean±SD; P=0.74 versus baseline) in the control group, 1.8±8.4% (P=0.12 versus baseline) in the early group, and 0.8±7.6% (P=0.45 versus baseline) in the late group. The treatment effect of BM-MNC as estimated by ANCOVA was 1.25 (95% confidence interval, -1.83 to 4.32; P=0.42) for the early therapy group and 0.55 (95% confidence interval, -2.61 to 3.71; P=0.73) for the late therapy group. CONCLUSIONS Among patients with ST-segment elevation myocardial infarction and LV dysfunction after successful reperfusion, intracoronary infusion of BM-MNC at either 5 to 7 days or 3 to 4 weeks after acute myocardial infarction did not improve LV function at 4-month follow-up.
Resumo:
BACKGROUND Acute cardiogenic shock after myocardial infarction is associated with high in-hospital mortality attributable to persisting low-cardiac output. The Impella-EUROSHOCK-registry evaluates the safety and efficacy of the Impella-2.5-percutaneous left-ventricular assist device in patients with cardiogenic shock after acute myocardial infarction. METHODS AND RESULTS This multicenter registry retrospectively included 120 patients (63.6±12.2 years; 81.7% male) with cardiogenic shock from acute myocardial infarction receiving temporary circulatory support with the Impella-2.5-percutaneous left-ventricular assist device. The primary end point evaluated mortality at 30 days. The secondary end point analyzed the change of plasma lactate after the institution of hemodynamic support, and the rate of early major adverse cardiac and cerebrovascular events as well as long-term survival. Thirty-day mortality was 64.2% in the study population. After Impella-2.5-percutaneous left-ventricular assist device implantation, lactate levels decreased from 5.8±5.0 mmol/L to 4.7±5.4 mmol/L (P=0.28) and 2.5±2.6 mmol/L (P=0.023) at 24 and 48 hours, respectively. Early major adverse cardiac and cerebrovascular events were reported in 18 (15%) patients. Major bleeding at the vascular access site, hemolysis, and pericardial tamponade occurred in 34 (28.6%), 9 (7.5%), and 2 (1.7%) patients, respectively. The parameters of age >65 and lactate level >3.8 mmol/L at admission were identified as predictors of 30-day mortality. After 317±526 days of follow-up, survival was 28.3%. CONCLUSIONS In patients with acute cardiogenic shock from acute myocardial infarction, Impella 2.5-treatment is feasible and results in a reduction of lactate levels, suggesting improved organ perfusion. However, 30-day mortality remains high in these patients. This likely reflects the last-resort character of Impella-2.5-application in selected patients with a poor hemodynamic profile and a greater imminent risk of death. Carefully conducted randomized controlled trials are necessary to evaluate the efficacy of Impella-2.5-support in this high-risk patient group.
Resumo:
BACKGROUND Ventricular torsion is an important component of cardiac function. The effect of septic shock on left ventricular torsion is not known. Because torsion is influenced by changes in preload, we compared the effect of fluid loading on left ventricular torsion in septic shock with the response in matched healthy control subjects. METHODS We assessed left ventricular torsion parameters using transthoracic echocardiography in 11 patients during early septic shock and in 11 age- and sex-matched healthy volunteers before and after rapid volume loading with 250 mL of a Ringer's lactate solution. RESULTS Peak torsion and peak apical rotation were reduced in septic shock (10.2 ± 5.2° and 5.6 ± 5.4°) compared with healthy volunteers (16.3 ± 4.5° and 9.6 ± 1.5°; P = 0.009 and P = 0.006 respectively). Basal rotation was delayed and diastolic untwisting velocity reached its maximum later during diastole in septic shock patients than in healthy volunteers (104 ± 16% vs 111 ± 14% and 13 ± 5% vs 21 ± 10%; P = 0.03 and P = 0.034, respectively). Fluid challenge increased peak torsion in both groups (septic shock, 10.2 ± 5.3° vs 12.6 ± 3.9°; healthy volunteers, 16.3 ± 4.5° vs 18.1 ± 6°; P = 0.01). Fluid challenge increased left ventricular stroke volume in septic shock patients (P = 0.003). CONCLUSIONS Compared with healthy volunteers, left ventricular torsion is impaired in septic shock patients. Fluid loading attenuates torsion abnormalities in parallel with increasing stroke volume. Reduced torsional motion might constitute a relevant component of septic cardiomyopathy, a notion that merits further testing in larger populations.
Resumo:
Due to the clinical success of left ventricular assist devices (LVADs) used for short term "bridge to transplant" and the limited availability of donor organs, heart assist devices are being considered for long term implantation as an alternative to heart transplantation. In an effort to improve biocompatibility, a nonthrombogenic cellular lining was developed from genetically engineered smooth muscle cells (GE-SMC) for the Thermocardiosystems Heartmate$\sp{\rm TM}$ LVAD. SMCs have been transduced with the genes for endothelial nitric oxide synthase (NOS III) and GTP cyclohydrolase (GTPCH) with subsequent stable expression of the NOS III protein via an Epstein Barr based DNA expression vector. Transduced SMCs produce nitric oxide at concentrations that reduce platelet deposition and smooth muscle cell proliferation when tested in vitro. In addition, the adhesive capabilities of GE-SMC linings were also examined, and optimized in physical environments mimicking typical in vivo LVAD operation. Preliminary investigations examining cell adhesion during constant shear stress exposure demonstrated an acute phase of cell loss corresponding to cytoskeletal F-actin rearrangement. Subsequently, an in vitro circulatory loop was designed to expose cell lined LVADs to in vivo operating conditions. Cumulative cell loss from cell lined LVADs was less than 10% after 24 hours of flow. Using a protocol for "preconditioning" the cell lining within the mock circulatory loop, the first implantation of an LVAD containing a genetically engineered SMC lining was successfully implemented in a bovine model. Results from this 24 hour study indicate that the flow-conditioned cellular lining remained intact with no evidence of thromboembolization and only minimal changes in coagulation studies. ^
Resumo:
Left ventricular mass (LVM) is a strong predictor of cardiovascular disease (CVD) in adults. However, normal growth of LVM in healthy children is not well understood, and previous results on independent effects of body size and body fatness on LVM have been inconsistent. The purpose of this study was (1) to establish the normal growth curve of LVM from age 8 to age 18, and evaluate the determinants of change in LVM with age, and (2) to assess the independent effects of body size and body fatness on LVM.^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. A synthetic cohort with continuous observations from age 8 to 18 years was constructed. A total of 4608 LVM measurements was made from M-mode echocardiography. The multilevel linear model was used for analysis.^ Sex-specific trajectories of normal growth of LVM from age 8 to 18 was displayed. On average, LVM was 15 g higher in males than females. Average LVM increased linearly in males from 78 g at age 8 to 145 g at age 18. For females, the trajectory was curvilinear, nearly constant after age 14. No significant racial differences were found. After adjustment for the effects of body size and body fatness, average LVM decreased slightly from age 8 to 18, and sex differences in changes of LVM remained constant.^ The impact of body size on LVM was examined by adding to a basic LVM-sex-age model one of 9 body size indicators. The impact of body fatness was tested by further introducing into each of the 9 LVM models (with one or another of the body size indicators) one of 4 body fatness indicators, yielding 36 models with different body size and body fatness combinations. The results indicated that effects of body size on LVM can be distinguished between fat-free body mass and fat body mass, both being independent, positive predictors. The former is the stronger determinant. When a non-fat-free body size indicator is used as predictor, the estimated residual effect of body fatness on LVM becomes negative. ^
DIGITAL BOUNDARY DETECTION, VOLUMETRIC AND WALL MOTION ANALYSIS OF LEFT VENTRICULAR CINE ANGIOGRAMS.
Resumo:
Aims: We sought to analyse local distribution of aortic annulus and left ventricular outflow tract (LVOT) calcification in patients undergoing transcatheter aortic valve replacement (TAVR) and its impact on aortic regurgitation (AR) immediately after device placement. Methods and results: A group of 177 patients with severe aortic stenosis undergoing multislice computed tomography of the aortic root followed by TAVR were enrolled in this single-centre study. Annular and LVOT calcifications were assessed per cusp using a semi-quantitative grading system (0: none; 1 [mild]: small, non-protruding calcifications; 2 [moderate]: protruding [>1 mm] or extensive [>50% of cusp sector] calcifications; 3 [severe]: protruding and extensive calcifications). Any calcification of the annulus or LVOT was present in 107 (61%) and 63 (36%) patients, respectively. Prevalence of annulus/LVOT calcifications in the left coronary cusp was 42% and 25%, respectively, in the non-coronary cusp 28% and 13%, in the right coronary cusp 13% and 5%. AR grade 2 to 4 assessed by the method of Sellers immediately after TAVR device implantation was observed in 55 patients (31%). Multivariate regression analysis revealed that the overall annulus calcification (OR [95% CI] 1.48 [1.10-2.00]; p=0.0106), the overall LVOT calcification (1.93 [1.26-2.96]; p=0.0026), any moderate or severe LVOT calcification (5.37 [1.52-18.99]; p=0.0092), and asymmetric LVOT calcification were independent predictors of AR. Conclusions: Calcifications of the aortic annulus and LVOT are frequent in patients undergoing TAVR, and both the distribution and the severity of calcifications appear to be independent predictors of aortic regurgitation after device implantation. - See more at: http://www.pcronline.com/eurointervention/77th_issue/126/#sthash.Hzodgju5.dpuf
Resumo:
OBJECTIVE Obtaining new details of radial motion of left ventricular (LV) segments using velocity-encoding cardiac MRI. METHODS Cardiac MR examinations were performed on 14 healthy volunteers aged between 19 and 26 years. Cine images for navigator-gated phase contrast velocity mapping were acquired using a black blood segmented κ-space spoiled gradient echo sequence with a temporal resolution of 13.8 ms. Peak systolic and diastolic radial velocities as well as radial velocity curves were obtained for 16 ventricular segments. RESULTS Significant differences among peak radial velocities of basal and mid-ventricular segments have been recorded. Particular patterns of segmental radial velocity curves were also noted. An additional wave of outward radial movement during the phase of rapid ventricular filling, corresponding to the expected timing of the third heart sound, appeared of particular interest. CONCLUSION The technique has allowed visualization of new details of LV radial wall motion. In particular, higher peak systolic radial velocities of anterior and inferior segments are suggestive of a relatively higher dynamics of anteroposterior vs lateral radial motion in systole. Specific patterns of radial motion of other LV segments may provide additional insights into LV mechanics. ADVANCES IN KNOWLEDGE The outward radial movement of LV segments impacted by the blood flow during rapid ventricular filling provides a potential substrate for the third heart sound. A biphasic radial expansion of the basal anteroseptal segment in early diastole is likely to be related to the simultaneous longitudinal LV displacement by the stretched great vessels following repolarization and their close apposition to this segment.