922 resultados para Learning activity
Resumo:
Early human development offers a unique perspective in investigating the potential cognitive and social implications of action and perception. Specifically, during infancy, action production and action perception undergo foundational developments. One essential component to examine developments in action processing is the analysis of others’ actions as meaningful and goal-directed. Little research, however, has examined the underlying neural systems that may be associated with emerging action and perception abilities, and infants’ learning of goal-directed actions. The current study examines the mu rhythm—a brain oscillation found in the electroencephalogram (EEG)—that has been associated with action and perception. Specifically, the present work investigates whether the mu signal is related to 9-month-olds’ learning of a novel goal-directed means-end task. The findings of this study demonstrate a relation between variations in mu rhythm activity and infants’ ability to learn a novel goal-directed means-end action task (compared to a visual pattern learning task used as a comparison task). Additionally, we examined the relations between standardized assessments of early motor competence, infants’ ability to learn a novel goal-directed task, and mu rhythm activity. We found that: 1a) mu rhythm activity during observation of a grasp uniquely predicted infants’ learning on the cane training task, 1b) mu rhythm activity during observation and execution of a grasp did not uniquely predict infants’ learning on the visual pattern learning task (comparison learning task), 2) infants’ motor competence did not predict infants’ learning on the cane training task, 3) mu rhythm activity during observation and execution was not related to infants’ measure of motor competence, and 4) mu rhythm activity did not predict infants’ learning on the cane task above and beyond infants’ motor competence. The results from this study demonstrate that mu rhythm activity is a sensitive measure to detect individual differences in infants’ action and perception abilities, specifically their learning of a novel goal-directed action.
Resumo:
An economy of effort is a core characteristic of highly skilled motor performance often described as being effortless or automatic. Electroencephalographic (EEG) evaluation of cortical activity in elite performers has consistently revealed a reduction in extraneous associative cortical activity and an enhancement of task-relevant cortical processes. However, this has only been demonstrated under what are essentially practice-like conditions. Recently it has been shown that cerebral cortical activity becomes less efficient when performance occurs in a stressful, complex social environment. This dissertation examines the impact of motor skill training or practice on the EEG cortical dynamics that underlie performance in a stressful, complex social environment. Sixteen ROTC cadets participated in head-to-head pistol shooting competitions before and after completing nine sessions of skill training over three weeks. Spectral power increased in the theta frequency band and decreased in the low alpha frequency band after skill training. EEG Coherence increased in the left frontal region and decreased in the left temporal region after the practice intervention. These suggest a refinement of cerebral cortical dynamics with a reduction of task extraneous processing in the left frontal region and an enhancement of task related processing in the left temporal region consistent with the skill level reached by participants. Partitioning performance into ‘best’ and ‘worst’ based on shot score revealed that deliberate practice appears to optimize cerebral cortical activity of ‘best’ performances which are accompanied by a reduction in task-specific processes reflected by increased high-alpha power, while ‘worst’ performances are characterized by an inappropriate reduction in task-specific processing resulting in a loss of focus reflected by higher high-alpha power after training when compared to ‘best’ performances. Together, these studies demonstrate the power of experience afforded by practice, as a controllable factor, to promote resilience of cerebral cortical efficiency in complex environments.
Resumo:
The synchronization of oscillatory activity in networks of neural networks is usually implemented through coupling the state variables describing neuronal dynamics. In this study we discuss another but complementary mechanism based on a learning process with memory. A driver network motif, acting as a teacher, exhibits winner-less competition (WLC) dynamics, while a driven motif, a learner, tunes its internal couplings according to the oscillations observed in the teacher. We show that under appropriate training the learner motif can dynamically copy the coupling pattern of the teacher and thus synchronize oscillations with the teacher. Then, we demonstrate that the replication of the WLC dynamics occurs for intermediate memory lengths only. In a unidirectional chain of N motifs coupled through teacher-learner paradigm the time interval required for pattern replication grows linearly with the chain size, hence the learning process does not blow up and at the end we observe phase synchronized oscillations along the chain. We also show that in a learning chain closed into a ring the network motifs come to a consensus, i.e. to a state with the same connectivity pattern corresponding to the mean initial pattern averaged over all network motifs.
Resumo:
The purpose of this study was to determine the cognitive effects of applying physical recreational activities to two groups of pre-school students, related to mathematics to one of the groups and recreational games to the other. A total of 27 subjects (13 girls and 14 boys) of 5 and a half and 6 and half years of age participated in the study. The instrument used was a questionnaire including basic math concepts such as geometry, basic operations with concrete elements, and how to read the clock, based on the topics established by the Costa Rican Ministry of Public Education. Once the instrument was developed, a plan of physical recreational activities related to math was prepared and applied to the experimental group (pre-school B) for one and a half months, while the other group played recreational games. Data was analyzed using descriptive and inferential statistics. Positive and significant effects were found in the physical recreational activity program regarding student performance in 10 of the 12 items that were applied to assess mastery of basic math concepts. In conclusion, using physical education as another instrument to teach other disciplines represents an excellent alternative for pre-school teachers that try to satisfy the learning needs of children that will soon be attending school. Using movement as part of guided and planned activities plays an indispensable role in children’s lives; therefore, learning academic subjects should be adapted to their needs to explore and know their environment.
Resumo:
This project in teaching innovation and improvement aims to disseminate the case method as one of the most innovative educational instruments inteaching of Law in general, and specifically with regard to Family and Inheritance Law. The methodology used ensures learning through a legal conflict, which must be resolved by the students themselves from different viewpoints as legal agents. This is an activity in teaching innovation, in which students become the protagonists. Participation is voluntary, and the main aim is student motivation. The subject's aim is for students to learn public speaking skills fundamental to the profession while familiarising themselves with judicial practice. Theteacher sets up a legal conflict in order for students to resolve the dispute as legal agents with divergent viewpoints - in other words, as judges, attorneys, lawyers and so on. The project seeks alternatives to traditional teaching methods and is an innovative teaching method aimed at professionally training future lawyers as well as being a model that involves students more in their own learning.
Resumo:
Socratic questioning stresses the importance of questioning for learning. Flipped Classroom pedagogy generates a need for effective questions and tasks in order to promote active learning. This paper describes a project aimed at finding out how different kinds of questions and tasks support students’ learning in a flipped classroom context. In this study, during the flipped courses, both the questions and tasks were distributed together with video recordings. Answers and solutions were presented and discussed in seminars, with approximately 10 participating students in each seminar. Information Systems students from three flipped classroom courses at three different levels were interviewed in focus groups about their perceptions of how different kinds of questions and tasks supported their learning process. The selected courses were organized differently, with various kinds of questions and tasks. Course one included open questions that were answered and presented at the seminar. Students also solved a task and presented the solution to the group. Course two included open questions and a task. Answers and solutions were discussed at the seminars where students also reviewed each other’s answers and solutions. Course three included online single- and multiple choice questions with real-time feedback. Answers were discussed at the seminar, with the focus on any misconceptions. In this paper we categorized the questions in accordance with Wilson (2016) as factual, convergent, divergent, evaluative, or a combination of these. In all, we found that any comprehensible question that initiates a dialogue, preferably with a set of Socratic questions, is perceived as promoting learning. This is why seminars that allow such questions and discussion are effective. We found no differences between the different kinds of Socratic questions. They were seen to promote learning so long as they made students reflect and problematize the questions. To conclude, we found that questions and tasks promote learning when they are answered and solved in a process that is characterized by comprehensibility, variation, repetition and activity.
Resumo:
Collecting and analysing data is an important element in any field of human activity and research. Even in sports, collecting and analyzing statistical data is attracting a growing interest. Some exemplar use cases are: improvement of technical/tactical aspects for team coaches, definition of game strategies based on the opposite team play or evaluation of the performance of players. Other advantages are related to taking more precise and impartial judgment in referee decisions: a wrong decision can change the outcomes of important matches. Finally, it can be useful to provide better representations and graphic effects that make the game more engaging for the audience during the match. Nowadays it is possible to delegate this type of task to automatic software systems that can use cameras or even hardware sensors to collect images or data and process them. One of the most efficient methods to collect data is to process the video images of the sporting event through mixed techniques concerning machine learning applied to computer vision. As in other domains in which computer vision can be applied, the main tasks in sports are related to object detection, player tracking, and to the pose estimation of athletes. The goal of the present thesis is to apply different models of CNNs to analyze volleyball matches. Starting from video frames of a volleyball match, we reproduce a bird's eye view of the playing court where all the players are projected, reporting also for each player the type of action she/he is performing.
Resumo:
Il riconoscimento delle condizioni del manto stradale partendo esclusivamente dai dati raccolti dallo smartphone di un ciclista a bordo del suo mezzo è un ambito di ricerca finora poco esplorato. Per lo sviluppo di questa tesi è stata sviluppata un'apposita applicazione, che combinata a script Python permette di riconoscere differenti tipologie di asfalto. L’applicazione raccoglie i dati rilevati dai sensori di movimento integrati nello smartphone, che registra i movimenti mentre il ciclista è alla guida del suo mezzo. Lo smartphone è fissato in un apposito holder fissato sul manubrio della bicicletta e registra i dati provenienti da giroscopio, accelerometro e magnetometro. I dati sono memorizzati su file CSV, che sono elaborati fino ad ottenere un unico DataSet contenente tutti i dati raccolti con le features estratte mediante appositi script Python. A ogni record sarà assegnato un cluster deciso in base ai risultati prodotti da K-means, risultati utilizzati in seguito per allenare algoritmi Supervised. Lo scopo degli algoritmi è riconoscere la tipologia di manto stradale partendo da questi dati. Per l’allenamento, il DataSet è stato diviso in due parti: il training set dal quale gli algoritmi imparano a classificare i dati e il test set sul quale gli algoritmi applicano ciò che hanno imparato per dare in output la classificazione che ritengono idonea. Confrontando le previsioni degli algoritmi con quello che i dati effettivamente rappresentano si ottiene la misura dell’accuratezza dell’algoritmo.
Resumo:
The inclusion of online elements in learning environments is becoming commonplace in Post Compulsory Education. A variety of research into the value of such elements is available, and this study aims to add further evidence by looking specifically at the use of collaborative technologies such as online discussion forums and wikis to encourage higher order thinking and self-sufficient learning. In particular, the research examines existing pedagogical models including Salmon’s five-stage model, along with other relevant literature. A case study of adult learners in community-based learning centres forms the basis of the research, and as a result of the findings, an arrow model is suggested as a framework for online collaboration that emphasises the learner, mentions pre-course preparation and then includes three main phases of activity: post, interact and critique. This builds on Salmon’s five-stage model and has the benefit of being flexible and responsive, as well as allowing for further development beyond the model, particularly in a blended learning environment.
Resumo:
Recent years have seen a focus on responding to student expectations in higher education. As a result, a number of technology-enhanced learning (TEL) policies have stipulated a requirement for a minimum virtual learning environment (VLE) standard to provide a consistent student experience. This paper offers insight into an under-researched area of such a VLE standard policy development using a case study of one university. With reference to the implementation staircase model, this study takes cue from the view that an institutional VLE template can affect lower levels directly, sidestepping the chain in the implementation staircase. The Group's activity whose remit is to design and develop a VLE template, therefore, becomes significant. The study, drawing on activity theory, explores the mediating role of such a Group. Factors of success and sources of tension are analysed to understand the interaction between the individuals and the collective agency of Group members. The paper identifies implications to practice for similar TEL development projects. Success factors identified demonstrated the importance of good project management principles, establishing clear rules and division of labour for TEL development groups. One key finding is that Group members are needed to draw on both different and shared mediating artefacts, supporting the conclusion that the nature of the group's composition and the situated expertise of its members are crucial for project success. The paper's theoretical contribution is an enhanced representation of a TEL policy implementation staircase.
Resumo:
The research question for this study was: ‘Can the provision of online resources help to engage and motivate students to become self-directed learners?’ This study presents the results of an action research project to answer this question for a postgraduate module at a research-intensive university in the United Kingdom. The analysis of results from the study was conducted dividing the students according to their programme degree – Masters or PhD – and according to their language skills. The study indicated that the online resources embedded in the module were consistently used, and that the measures put in place to support self-directed learning (SDL) were both perceived and valued by the students, irrespective of their programme or native language. Nevertheless, a difference was observed in how students viewed SDL: doctoral students seemed to prefer the approach and were more receptive to it than students pursuing their Masters degree. Some students reported that the SDL activity helped them to achieve more independence than did traditional approaches to teaching. Students who engaged with the online resources were rewarded with higher marks and claimed that they were all the more motivated within the module. Despite the different learning experiences of the diverse cohort, the study found that the blended nature of the course and its resources in support of SDL created a learning environment which positively affected student learning.
Resumo:
In the last decade, manufacturing companies have been facing two significant challenges. First, digitalization imposes adopting Industry 4.0 technologies and allows creating smart, connected, self-aware, and self-predictive factories. Second, the attention on sustainability imposes to evaluate and reduce the impact of the implemented solutions from economic and social points of view. In manufacturing companies, the maintenance of physical assets assumes a critical role. Increasing the reliability and the availability of production systems leads to the minimization of systems’ downtimes; In addition, the proper system functioning avoids production wastes and potentially catastrophic accidents. Digitalization and new ICT technologies have assumed a relevant role in maintenance strategies. They allow assessing the health condition of machinery at any point in time. Moreover, they allow predicting the future behavior of machinery so that maintenance interventions can be planned, and the useful life of components can be exploited until the time instant before their fault. This dissertation provides insights on Predictive Maintenance goals and tools in Industry 4.0 and proposes a novel data acquisition, processing, sharing, and storage framework that addresses typical issues machine producers and users encounter. The research elaborates on two research questions that narrow down the potential approaches to data acquisition, processing, and analysis for fault diagnostics in evolving environments. The research activity is developed according to a research framework, where the research questions are addressed by research levers that are explored according to research topics. Each topic requires a specific set of methods and approaches; however, the overarching methodological approach presented in this dissertation includes three fundamental aspects: the maximization of the quality level of input data, the use of Machine Learning methods for data analysis, and the use of case studies deriving from both controlled environments (laboratory) and real-world instances.
Resumo:
Hematological cancers are a heterogeneous family of diseases that can be divided into leukemias, lymphomas, and myelomas, often called “liquid tumors”. Since they cannot be surgically removable, chemotherapy represents the mainstay of their treatment. However, it still faces several challenges like drug resistance and low response rate, and the need for new anticancer agents is compelling. The drug discovery process is long-term, costly, and prone to high failure rates. With the rapid expansion of biological and chemical "big data", some computational techniques such as machine learning tools have been increasingly employed to speed up and economize the whole process. Machine learning algorithms can create complex models with the aim to determine the biological activity of compounds against several targets, based on their chemical properties. These models are defined as multi-target Quantitative Structure-Activity Relationship (mt-QSAR) and can be used to virtually screen small and large chemical libraries for the identification of new molecules with anticancer activity. The aim of my Ph.D. project was to employ machine learning techniques to build an mt-QSAR classification model for the prediction of cytotoxic drugs simultaneously active against 43 hematological cancer cell lines. For this purpose, first, I constructed a large and diversified dataset of molecules extracted from the ChEMBL database. Then, I compared the performance of different ML classification algorithms, until Random Forest was identified as the one returning the best predictions. Finally, I used different approaches to maximize the performance of the model, which achieved an accuracy of 88% by correctly classifying 93% of inactive molecules and 72% of active molecules in a validation set. This model was further applied to the virtual screening of a small dataset of molecules tested in our laboratory, where it showed 100% accuracy in correctly classifying all molecules. This result is confirmed by our previous in vitro experiments.
Resumo:
Most cognitive functions require the encoding and routing of information across distributed networks of brain regions. Information propagation is typically attributed to physical connections existing between brain regions, and contributes to the formation of spatially correlated activity patterns, known as functional connectivity. While structural connectivity provides the anatomical foundation for neural interactions, the exact manner in which it shapes functional connectivity is complex and not yet fully understood. Additionally, traditional measures of directed functional connectivity only capture the overall correlation between neural activity, and provide no insight on the content of transmitted information, limiting their ability in understanding neural computations underlying the distributed processing of behaviorally-relevant variables. In this work, we first study the relationship between structural and functional connectivity in simulated recurrent spiking neural networks with spike timing dependent plasticity. We use established measures of time-lagged correlation and overall information propagation to infer the temporal evolution of synaptic weights, showing that measures of dynamic functional connectivity can be used to reliably reconstruct the evolution of structural properties of the network. Then, we extend current methods of directed causal communication between brain areas, by deriving an information-theoretic measure of Feature-specific Information Transfer (FIT) quantifying the amount, content and direction of information flow. We test FIT on simulated data, showing its key properties and advantages over traditional measures of overall propagated information. We show applications of FIT to several neural datasets obtained with different recording methods (magneto and electro-encephalography, spiking activity, local field potentials) during various cognitive functions, ranging from sensory perception to decision making and motor learning. Overall, these analyses demonstrate the ability of FIT to advance the investigation of communication between brain regions, uncovering the previously unaddressed content of directed information flow.
Resumo:
Recent experiments have revealed the fundamental importance of neuromodulatory action on activity-dependent synaptic plasticity underlying behavioral learning and spatial memory formation. Neuromodulators affect synaptic plasticity through the modification of the dynamics of receptors on the synaptic membrane. However, chemical substances other than neuromodulators, such as receptors co-agonists, can influence the receptors' dynamics and thus participate in determining plasticity. Here we focus on D-serine, which has been observed to affect the activity thresholds of synaptic plasticity by co-activating NMDA receptors. We use a computational model for spatial value learning with plasticity between two place cell layers. The D-serine release is CB1R mediated and the model reproduces the impairment of spatial memory due to the astrocytic CB1R knockout for a mouse navigating in the Morris water maze. The addition of path-constraining obstacles shows how performance impairment depends on the environment's topology. The model can explain the experimental evidence and produce useful testable predictions to increase our understanding of the complex mechanisms underlying learning.