886 resultados para Latex proteins
Resumo:
Chicken egg yolk biotin-binding protein-I (BBP-I) has been purified to homogeneity along with the tetrameric BBP-II by a common protocol. The purification includes delipidation of egg yolk by butanol extraction, DEAE-Sephacel chromatography, treatment with guanidinium chloride and biotin-aminohexyl-Sepharose affinity chromatography. The identity of purified BBP-I was ascertained by its physicochemical properties as well as by its immunological cross-reactivity and precursor-product relationship with BBP-II.
Resumo:
Acyl carrier proteins (ACP) were purified to homogeneity in the active form from developing seeds of pisa (Actinodaphne hookeri) which synthesizes exclusively trilaurin and from ground nut (Arachis hypogaea) which synthesizes triacylglycerols containing long chain fatty acids. Two major isoforms of ACPs were purified from developing pisa seeds using DEAE-cellulose, Superose-6 FPLC and C-4 reversed phase HPLC chromatographic methods. In contrast, only a single form of ACP was present in ground nut seeds which was purified by anion-exchange and activated thiol-Sepharose 4B affinity chromatography. The two isoforms of ACPs from pisa showed nearly the same specific activity of 6,706 and 7,175 pmol per min per mg protein while ground nut ACP showed a specific activity of 3,893 pmol per min per mg protein when assayed using E. coli acyl-ACP synthetase and [1-C-14]palmitic acid. When compared with E. coli ACP, the purified ACPs from both the seeds showed considerable difference in their mobility in native PAGE, but showed similar mobility in SDS-PAGE under reducing conditions. In the absence of reducing agents formation of dimers was quite prominent. The ACPs from both the seed sources were acid- and heat-stable. The major isoform of pisa seed ACP and the ground nut ACP contain 91 amino acids with M(r) 11,616 and 1,228 respectively. However, there is significant variation in their amino acid composition. A comparision of the amino acid sequence in the N-terminal region of pisa and ground nut seed ACPs showed considerable homology between themselves and with other plant ACPs but not with E. coli ACP.
Resumo:
A phenomenological model has been developed for predicting separation factors obtained in concentrating protein solutions using batch-foam columns. The model considers the adsorption of surface active proteins onto the air-water interface of bubbles, and drainage of liquid from the foam, which are the two predominant processes responsible for separation in foam columns. The model has been verified with data collected on casein and bovine serum albumin (BSA) solutions, for which adsorption isotherms are available in the literature. It has been found that an increase in liquid pool height above the gas distributor and the time allowed for drainage result in a better separation. Further, taller foam columns yield poorer separation at constant time of drainage. The model successfully predicts the observed results. (C) 1997 Elsevier Science Ltd.
Resumo:
The serendipitous observation of a C-H...O hydrogen bond mediated polypeptide chain reversal in synthetic peptide helices has led to a search for the occurrence of a similar motif in protein structures. From a dataset of 634 proteins, 1304 helices terminating in a Schellman motif have been examined. The C-H...O interaction between the T - 4 (CH)-H-alpha and T + 1 C=O group (C...O 3.5 Angstrom) becomes possible only when the T + 1 residue adopts an extended beta conformation (T is defined as the helix terminating residue adopting an alpha(L) conformation). In all, 111 examples of this chain reversal motif have been identified and the compositional and conformational. preferences at positions T - 4, T, and T + 1 determined. A marked preference for residues like Set, Glu and Gln is observed at T - 4 position with the motif being further stabilized by the formation of a side-chain-backbone O...H-N hydrogen bond involving the side-chain of residue T - 4 and the N-H group of residue T + 3. In as many as 57 examples, the segment following the helix was extended with three to four successive residues in beta conformation. In a majority of these cases, the succeeding beta strand lies approximately antiparallel with the helix, suggesting that the backbone C-H...O interactions may provide a means of registering helices and strands in an antiparallel orientation. Two examples were identified in which extended registry was detected with two sets of C-H...O hydrogen bonds between (T - 4) (CH)-H-alpha...C=O (T + 1) and (T - 8) (CH)-H-alpha...C=O (T + 3). 0 2002 Published by Elsevier Science Ltd.
Resumo:
Depth measures the extent of atom/residue burial within a protein. It correlates with properties such as protein stability, hydrogen exchange rate, protein-protein interaction hot spots, post-translational modification sites and sequence variability. Our server, DEPTH, accurately computes depth and solvent-accessible surface area (SASA) values. We show that depth can be used to predict small molecule ligand binding cavities in proteins. Often, some of the residues lining a ligand binding cavity are both deep and solvent exposed. Using the depth-SASA pair values for a residue, its likelihood to form part of a small molecule binding cavity is estimated. The parameters of the method were calibrated over a training set of 900 high-resolution X-ray crystal structures of single-domain proteins bound to small molecules (molecular weight < 1.5 KDa). The prediction accuracy of DEPTH is comparable to that of other geometry-based prediction methods including LIGSITE, SURFNET and Pocket-Finder (all with Matthew's correlation coefficient of similar to 0.4) over a testing set of 225 single and multi-chain protein structures. Users have the option of tuning several parameters to detect cavities of different sizes, for example, geometrically flat binding sites. The input to the server is a protein 3D structure in PDB format. The users have the option of tuning the values of four parameters associated with the computation of residue depth and the prediction of binding cavities. The computed depths, SASA and binding cavity predictions are displayed in 2D plots and mapped onto 3D representations of the protein structure using Jmol. Links are provided to download the outputs. Our server is useful for all structural analysis based on residue depth and SASA, such as guiding site-directed mutagenesis experiments and small molecule docking exercises, in the context of protein functional annotation and drug discovery.
Isolation and characterization of proteolytic enzymes from the latex of Synadenium grantii Hook, 'f'
Resumo:
Two fractions showing proteolytic enzymes have been obtained from the latex of Synadenium grantii Hook, 'f', using gel-filtration and anion-exchange chromatographic techniques. Both these proteases have the same molecular mass of 76+/-2 kDa each. They exhibit maximal activity at pH 7.0 and at a temperature of 60 degreesC. They display stability over a pH range from 5-10 and are also highly thermostable. Irreversible inhibition by PMSF indicates that they are serine proteases. In addition, histidine residues also appear to play an important role in catalysis as evidenced by inhibition with DEPC. They also exhibit similarity with respect to pH and temperature optima, kinetic properties and thermal stability. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The positive element (PE) (-69 to -98 bp) within the 5'-proximal region of the CYP2B1B2 gene (+1 to -179 bp) of rat liver is essential for phenobarbitone (PB) response and gives a single major complex with the rat liver cytosol in gel shift analysis. This complex corresponds to complex I (top) of the three complexes given by the nuclear extracts. PB treatment of rats leads to a decrease in complex I formation with the cytosol and PE and an increase in the same with the nuclear extract in gel shift analysis. Both the changes are counteracted by simultaneous okadaic acid administration. The nuclear protein giving rise to complex I has been isolated and has an M-r of 26 kDa. The cytosolic counterpart consists of two species, 26 and 28 kDa, as revealed by Southwestern blot analysis using labeled PE. It is concluded that PB treatment leads to the translocation accompanied by processing of the cytosolic protein species into the nucleus that requires protein dephosphorylation. It is suggested that PB may exert a global regulation on the transcription of many genes by modulating the phosphorylation status of different protein factors involved in transcriptional regulation. (C) 2002 Elsevier Science (USA).
Resumo:
The design and synthesis of agents that can abstract zinc from their [CCXX] (C=cysteine; X=cysteine/histidine) boxes by thioldisulfide exchange-having as control, the redox parities of the core sulfur ligands of the reagent and the enzyme, has been illustrated, and their efficiency demonstrated by monitoring the inhibition of the transcription of calf thymus DNA by E. coli RNA polymerase, which harbors two zinc atoms in their [CCXX] boxes of which one is exchangeable. Maximum inhibition possible with removal of the exchangeable zinc was seen with redox-sulfanilamide-glutamate composite. In sharp contrast, normal chelating agents (EDTA, phenanthroline) even in a thousand fold excess showed only marginal inhibition, thus supporting an exchange mechanism for the metal removal. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Membrane proteins are involved in a number of important biological functions. Yet, they are poorly understood from the structure and folding point of view. The external environment being drastically different from that of globular proteins, the intra-protein interactions in membrane proteins are also expected to be different. Hence, statistical potentials representing the features of inter-residue interactions based exclusively on the structures of membrane proteins are much needed. Currently, a reasonable number of structures are available, making it possible to undertake such an analysis on membrane proteins. In this study we have examined the inter-residue interaction propensities of amino acids in the membrane spanning regions of the alpha-helical membrane (HM) proteins. Recently we have shown that valuable information can be obtained on globular proteins by the evaluation of the pair-wise interactions of amino acids by classifying them into different structural environments, based on factors such as the secondary structure or the number of contacts that a residue can make. Here we have explored the possible ways of classifying the intra-protein environment of HM proteins and have developed scoring functions based on different classification schemes. On evaluation of different schemes, we find that the scheme which classifies amino acids to different intra-contact environment is the most promising one. Based on this classification scheme, we also redefine the hydrophobicity scale of amino acids in HM proteins.
Resumo:
Protein folding and unfolding are complex phenomena, and it is accepted that multidomain proteins generally follow multiple pathways. Maltose-binding protein (MBP) is a large (a two-domain, 370-amino acid residue) bacterial periplasmic protein involved in maltose uptake. Despite the large size, it has been shown to exhibit an apparent two-state equilibrium unfolding in bulk experiments. Single-molecule studies can uncover rare events that are masked by averaging in bulk studies. Here, we use single-molecule force spectroscopy to study the mechanical unfolding pathways of MBP and its precursor protein (preMBP) in the presence and absence of ligands. Our results show that MBP exhibits kinetic partitioning on mechanical stretching and unfolds via two parallel pathways: one of them involves a mechanically stable intermediate (path I) whereas the other is devoid of it (path II). The apoMBP unfolds via path I in 62% of the mechanical unfolding events, and the remaining 38% follow path II. In the case of maltose-bound MBP, the protein unfolds via the intermediate in 79% of the cases, the remaining 21% via path II. Similarly, on binding to maltotriose, a ligand whose binding strength with the polyprotein is similar to that of maltose, the occurrence of the intermediate is comparable (82% via path I) with that of maltose. The precursor protein preMBP also shows a similar behavior upon mechanical unfolding. The percentages of molecules unfolding via path I are 53% in the apo form and 68% and 72% upon binding to maltose and maltotriose, respectively, for preMBP. These observations demonstrate that ligand binding can modulate the mechanical unfolding pathways of proteins by a kinetic partitioning mechanism. This could be a general mechanism in the unfolding of other large two-domain ligand-binding proteins of the bacterial periplasmic space.