315 resultados para Laminate veneer
Resumo:
Purpose: This study evaluated the effect of different surface conditioning protocols on the repair strength of resin composite to the zirconia core / veneering ceramic complex, simulating the clinical chipping phenomenon.Materials and Methods: Forty disk-shaped zirconia core (Lava Zirconia, 3M ESPE) (diameter: 3 mm) specimens were veneered circumferentially with a feldspathic veneering ceramic (VM7, Vita Zahnfabrik) (thickness: 2 mm) using a split metal mold. They were then embedded in autopolymerizing acrylic with the bonding surfaces exposed. Specimens were randomly assigned to one of the following surface conditioning protocols (n = 10 per group): group 1, veneer: 4% hydrofluoric acid (HF) (Porcelain Etch) + core: aluminum trioxide (50-mu m Al2O3) + core + veneer: silane (ESPE-Sil); group 2: core: Al2O3 (50 mu m) + veneer: HF + core + veneer: silane; group 3: veneer: HF + core: 30 mu m aluminum trioxide particles coated with silica (30 mu m SiO2) + core + veneer: silane; group 4: core: 30 mu m SiO2 + veneer: HF + core + veneer: silane. Core and veneer ceramic were conditioned individually but no attempt was made to avoid cross contamination of conditioning, simulating the clinical intraoral repair situation. Adhesive resin (VisioBond) was applied to both the core and the veneer ceramic, and resin composite (Quadrant Posterior) was bonded onto both substrates using polyethylene molds and photopolymerized. After thermocycling (6000 cycles, 5 degrees C-55 degrees C), the specimens were subjected to shear bond testing using a universal testing machine (1 mm/min). Failure modes were identified using an optical microscope, and scanning electron microscope images were obtained. Bond strength data (MPa) were analyzed statistically using the non-parametric Kruskal-Wallis test followed by the Wilcoxon rank-sum test and the Bonferroni Holm correction (alpha = 0.05).Results: Group 3 demonstrated significantly higher values (MPa) (8.6 +/- 2.7) than those of the other groups (3.2 +/- 3.1, 3.2 +/- 3, and 3.1 +/- 3.5 for groups 1, 2, and 4, respectively) (p < 0.001). All groups showed exclusively adhesive failure between the repair resin and the core zirconia. The incidence of cohesive failure in the ceramic was highest in group 3 (8 out of 10) compared to the other groups (0/10, 2/10, and 2/10, in groups 1, 2, and 4, respectively). SEM images showed that air abrasion on the zirconia core only also impinged on the veneering ceramic where the etching pattern was affected.Conclusion: Etching the veneer ceramic with HF gel and silica coating of the zirconia core followed by silanization of both substrates could be advised for the repair of the zirconia core / veneering ceramic complex.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aiming to investigate in vitro the behavior of esthetic veneers placed in crows and made of the laboratory resins Artglass and Targis when submitted to insertion and removal of circunferential cobalt-chromium clasps, 24 veneer crowns were made (twelve with Artglass (Heraeus Kulzer) and twelve with Targis (Ivoclar Vivadent)), as well as the respective cobalt-chromium clasps. The crowns were then submitted to five thousand cycles of clasps insertion and removal, using a proper device. Using the verification of the force necessary to remove the clasps over the crowns during the experiment, the clasps and crowns mass variation, and the macroscopic inspection of the veneers, one may conclude that the veneers did not show a significant variation of the force required to remove the clasps over the crowns; they show a little amount of abrasion, possible to detect using a visual inspection and they show a little and variable amount of mass loss, less for that made with Artglass (average of 0,002g) and greater for that made with Targis (average of 0,006g)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To evaluate the survival rate, success rate, load to fracture, and finite element analysis (FEA) of maxillary central incisors and canines restored using ceramic veneers and varying preparation designs.Methods and Materials: Thirty human maxillary central incisors and 30 canines were allocated to the following four groups (n=15) based on the preparation design and type of tooth: Gr1 = central incisor with a conservative preparation; Gr2 = central incisor with a conventional preparation with palatal chamfer; Gr3 = canine with a conservative preparation; Gr4 = canine with a conventional preparation with palatal chamfer. Ceramic veneers (lithium disilicate) were fabricated and adhesively cemented (Variolink Veneer). The specimens were subjected to 4 x 106 mechanical cycles and evaluated at every 500,000 cycles to detect failures. Specimens that survived were subjected to a load to fracture test. Bidimensional models were modeled (Rhinoceros 4.0) and evaluated (MSC.Patrans 2005r2 and MSC.Marc 2005r2) on the basis of their maximum principal stress (MPS) values. Survival rate values were analyzed using the Kaplan-Meier test (alpha = 0.05) and load to fracture values were analyzed using the Student t-test (alpha = 0.05).Results: All groups showed 100% survival rates. The Student t-test did not show any difference between the groups for load to fracture. FEA showed higher MPS values in the specimens restored using veneers with conventional preparation design with palatal chamfer.Conclusion: Preparation design did not affect the fracture load of canines and central incisors, but the veneers with conventional preparation design with palatal chamfer exhibited a tendency to generate higher MPS values.
Resumo:
Technology is growing interest in the use of composites, due to the requirement of lighter materials and more resistant, factors essential to meet the project specifications and reduce the operational cost. In the production of high performance structural composites, considering the aerospace criteria, the domestic industry has shown interest in the process of resin transfer molding (RTM) for reproducibility and low cost. This process is suitable for producing components of polymeric composites with relatively simple geometries, consistent thicknesses, high quality finish with no size limitations. The objective of this work was machined carbon steel to make a matched-die tooling for RTM and produce two composite plates of epoxy resin and carbon fiber fabric with and without induced discontinuities, which were compared towards their impregnation with ultrasound, their properties via tensile tests and thermal analysis. In ultrasonic inspection, it was found good impregnation of the preform of both composites. In the thermal analysis it was possible to check the degradation temperature of the composites, the glass transition temperature and it was found that the composites showed no effective cure cycles, but presented good performance in the tensile test when compared with aluminum alloy 7050 T7451 . The results showed that the injection strategy was appropriate since the laminate exhibited a good quality for the proposed application
Resumo:
Nowadays technological trend is based on finding materials that could support low weight with satisfactory mechanical properties and for this reason composite material became a very attractive topic in research projects all over the world. Due to its heterogenic properties, this type of material shows scatter in mechanical test results, especially in cyclic loading. Therefore it is important to predict its fatigue strength behaviour by statistic analysis, once fatigue causes approximately 90% of the failure in structural components. The present work aimed to investigate the fatigue behaviour of the Twill/Cycom 890 composite, which is carbon fiber reinforced with polymeric resin as matrix and manufactured via RTM process (Resin Transfer Molding). All samples were tested in different tensile level in triplicate in order to associate these values. The statistical analysis was conducted with Two-Parameter Weibull Distribution and then evaluated the fatigue life results for the composite. Weibull graphics were used to determine the scale and shape parameters. The S-N curve for the Twill/Cycom composite was drawn and indicated the number of cycles to occur the first damages in this material. The probability of failure was associated with material reliability, as shown in graphics for the different tensile levels and fatigue life. In addition, the laminate was evaluated by ultrasonic inspection showing a regular impregnation. The fractographic analysis conducted by SEM showed failure mechanisms for polymeric composites associated to cyclic loadings ... (Complete abstract click electronic access below)
Resumo:
The development of technology for structural composites has as one of its ends form a set of materials that combine high values of mechanical strength and stiffness and low density. Today, companies like Embraer and PETROBRAS and research institutions like NASA, working with these materials with recognized advantages in terms of weight gain, increased performance and low corrosion. We have developed a systematic study to determine the bond strength between composite carbon fiber / epoxy and fiberglass / epoxy laminate both bonded to a carbon steel which are widely used in the petrochemical industry and repair. For morphological evaluation and bonding between materials of different natures, ultrasound analysis, optical microscopy and stereoscopy were performed. To simulate actual conditions, the composites were subjected to conditioning by using heat shock temperatures from -50 to 80 ° C for 1000 cycles for composite carbon fiber / epoxy composites and 2000 cycles for fiberglass / epoxy . The use of composites studied here proved to be efficient to perform repairs in metallic pipes with application petrochemical, as when exposed to sudden changes of temperature (-50 ° to 80 ° C) cycling at 1000 to 2000 times, its mechanical properties (shear and tensile) practically do not change
Resumo:
Hybrid composites combining metal plates and laminates with continuous fiber reinforced polymer, called fiber-metal (CHMF), have been particularly attractive for aerospace applications, due mainly to their high mechanical strength and stiffness associated with low density. These laminates (CHMF) consist of a sandwich structure consisting of layers of polymer composites and metal plates, stacked alternately. This setting allows you to combine the best mechanical performance of polymer composites reinforced with long fibers, to the high toughness of metals. Environmental effects should always be considered in the design of structural components, because these materials in applications are submitted to the effects of moisture in the atmosphere, the large cyclical variations of temperature around 82 ° C to -56 ° C, and high effort mechanical. The specimens of fibermetal composite were prepared at EMBRAER with titanium plates and laminates of carbon fiber/epoxy resin. This study aims to evaluate the effect of different environmental conditions (water immersion, hygrothermal chamber and thermal shock) of laminate hybrid titanium/carbon fiber/epoxy resin. The effects of conditioning were evaluated by interlaminar shear tests - ILSS, tensile, and vibration free
Resumo:
The increasing application of structural composites in the aerospace industry is mainly due to its low specific weight coupled with its excellent mechanical properties when in service. As a result of climatic variations that pass the aircraft is of paramount importance to study the influence of weathering on this type of material when subjected to such changes. The purpose of this work is to evaluate the mechanical behavior of specimens of kevlar fiber /epoxy matrix composites, by dynamic mechanical thermal analysis (DMA) and interlaminar shear strength tests (ILSS), after passing through three environmental conditioning: saline fog, hygrothermal and ultraviolet radiation. From the results, we concluded that the laminate was molded supplied homogeneously, not presenting problems such as porosity, delaminations or cracks inside. After a period of 625 hours of exposure to hygrothermal conditioning, we observed a 1,2% maximum of absorption of moisture. Samples subjected to the conditioning by UV irradiation (600 hours) and salt spray showed a reduction of about 24,30% and 32,30%, respectively, on the shear strength (ILSS). In DMA analysis is not observed significant changes on the glass transition temperature. However, when considering the storage modulus of the samples conditioned by UV radiation (1200 hours), salt spray and hygrothermal conditioning there is an increase of 5,34% , 7,19% and 5,57% respectively
Resumo:
This graduation work done study of polyamide 6.6/composite carbon fibres, since its processing, characterization of the main properties. Besides the influence of temperature, UV radiation, salt spray and moisture on the mechanical and viscoelastic behavior. To achieve this goal, the first composite was processed from the heat compression molding using known variables of the process and using the empirical method to find the best value for other parameters. The method processing molding was chosen because it common in composites processing in order to evaluate the influence of crystallinity of the properties that influence the mechanical and viscoelastic behavior laminates. From the obtained laminate specimens were evaluated in weathering, such as: in hygrothermal chamber, UV, salt spray and thermal shock. In another step, the effect produced by these constraints were evaluated by optical microscopy, ultrasound, dynamic mechanical analysis and vibration tests. This project was conducted at the Department of Technology and Materials of UNESP in Guaratingueta, where all the equipment and techniques for the implementation of this project met available. After the tests proved the applicability of the composite polyamide 6.6/carbon fibers in aeronautical applications with resistance the main climatic influences
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Crowns made from an yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) core with a porcelain veneer have shown high clinical failure rates. Manifestations of clinical failure in veneering ceramic ranges from a single chip to an extended fracture. Core failures are uncommon but usually are catastrophic. This article examines the possible causes of failure in zirconia systems and presents a case report involving the diagnosis and repair of three different types of failure in six 3Y-TZP/porcelain crowns.