997 resultados para Lady Franklin Bay Expedition (1881-1884)
Resumo:
This report is a technical assessment of the hydrological environment of the southern Moreton Bay islands and follows the terms of reference supplied by the then Queensland Department of Natural Resources and Water. The terms of reference describe stage 1 as a condition assessment and stage 2 as an assessment of the implications of water planning scenarios on future condition. This report is the first stage of a two-stage investigation whose primary purpose is to identify and assess groundwater dependent ecosystems (GDEs) and the groundwater flow regimes necessary to support them. Within this context, the groundwaters themselves are also considered and comment made on their condition. Information provided in this report will inform an amendment to the Logan Basin Water Resource Plan to incorporate the southern Moreton Bay islands. The study area is the water resource plan amendment area, which includes North and South Stradbroke islands and the smaller islands between these and the mainland, including the inhabited smaller rocky islands—namely, Macleay, Russell, Karragarra, Lamb and Coochiemudlo islands. This assessment is largely a desktop study based on existing information, but incorporates some field observations, input from experts in specific areas and community representatives, and the professional experience and knowledge of the authors. This report reviews existing research and information on the southern Moreton Bay area with an emphasis on North Stradbroke Island, as it represents the largest and most regionally significant groundwater resource in southern Moreton Bay. The report provides an assessment of key waterrelated environmental features, their condition and their degree of dependence on groundwater. This report also assesses the condition and status of ecosystems within this region. In addition, the report identifies information gaps, uncertainties and potential impacts; reviews groundwater models that have been developed for North Stradbroke Island; and makes recommendations on monitoring and research needs.
Resumo:
Nha Trang Bay (NTB) is located on the Central Vietnam coast, western South China Sea. Recent coastal development of Nha Trang City has raised public concern over an increasing level of pollution within the bay and degradation of nearby coral reefs. In this study, multiple proxies (e.g., trace metals, rare earth elements (REEs), and Y/Ho) recorded in a massive Porites lutea coral colony were used to reconstruct changes in seawater conditions in the NTB from 1995 to 2009. A 14-year record of REEs and other trace metals revealed that the concentrations of terrestrial trace metals have increased dramatically in response to an increase in coastal development projects such as road, port, and resort constructions, port and river dredging, and dumping activities since 2000. The effects of such developmental processes are also evident in changes in REE patterns and Y/Ho ratios through time, suggesting that both parameters are critical proxies for marine pollution.
Resumo:
Research into the human dynamics of expeditions is a potentially rewarding and fruitful area of study. However, the complex nature of expedition work presents the researcher with numerous challenges. This paper presents a personal reflection on the challenges linked to determining appropriate methodological processes for a study into expedition teamwork. Previous expedition research is outlined and reviewed for appropriateness. Some alternative methodological theories are described and limitations highlighted. Lastly the actual data gathering and analysis processes are detailed. The aim being to show that what happened in the field inevitably dictated how methodological processes were adapted. Essentially the paper describes a personal journey into research. A journey that sparked numerous personal insights in the science of human dynamics and expeditions and one that I hope will add to the development of expedition research in general.
Resumo:
The Lady Elliot Island eco-resort, on the Great Barrier Reef, operates with a strong sustainability ethic, and has broken away from its reliance on diesel generators, an initiative which has ongoing and substantial economic benefit. The first step was an energy audit that led to a 35% reduction in energy usage, to an average of 575 kWh per day. The eco-resort then commissioned a hybrid solar power station, in 2008, with energy storage in battery banks. Solar power is currently (2013) providing about 160 kWh of energy per day, and the eco-resort’s diesel fuel usage has decreased from 550 to 100 litres per day, enabling the power station to pay for itself in 3 years. The eco-resort plans to complete its transition to renewable energy by 2015, by installing additional solar panels, and a 10-15 kW wind turbine. This paper starts by discussing why the eco-resort chose a hybrid solar power station to transition to renewable energy, and the barriers to change. It then describes the power station, upgrades through to 2013, the power control system, the problems that were solved to realise the potential of a facility operating in a harsh and remote environment, and its performance. The paper concludes by outlining other eco-resort sustainability practices, including education and knowledge-sharing initiatives, and monitoring the island’s environmental and ecological condition.
Resumo:
It is increasingly apparent that sea-level data (e.g. microfossil transfer functions, dated coral microatolls and direct observations from satellite and tidal gauges) vary temporally and spatially at regional to local scales, thus limiting our ability to model future sea-level rise for many regions. Understanding sealevel response at ‘far-field’ locations at regional scales is fundamental for formulating more relevant sea-level rise susceptibility models within these regions under future global change projections. Fossil corals and reefs in particular are valuable tools for reconstructing past sea levels and possible environmental phase shifts beyond the temporal constraints of instrumental records. This study used abundant surface geochronological data based on in situ subfossil corals and precise elevation surveys to determine previous sea level in Moreton Bay, eastern Australia, a far-field site. A total of 64 U-Th dates show that relative sea level was at least 1.1 m above modern lowest astronomical tide (LAT) from at least ˜6600 cal. yr BP. Furthermore, a rapid synchronous demise in coral reef growth occurred in Moreton Bay ˜5800 cal. yr BP, coinciding with reported reef hiatus periods in other areas around the Indo-Pacific region. Evaluating past reef growth patterns and phases allows for a better interpretation of anthropogenic forcing versus natural environmental/climatic cycles that effect reef formation and demise at all scales and may allow better prediction of reef response to future global change.
Resumo:
Sediment samples from 13 sampling sites in Deception Bay, Australia were analysed for the presence of heavy metals. Enrichment factors, modified contamination indices and Nemerow pollution indices were calculated for each sampling site to determine sediment quality. The results indicate significant pollution of most sites by lead (average enrichment factor (EF) of 13), but there is also enrichment of arsenic (average EF 2.3), zinc (average EF 2.7) and other heavy metals. The modified degree of contamination indices (average 1.0) suggests that there is little contamination. By contrast, the Nemerow pollution index (average 5.8) suggests that Deception Bay is heavily contaminated. Cluster analysis was undertaken to identify groups of elements. Strong correlation between some elements and two distinct clusters of sampling sites based on sediment type was evident. These results have implications for pollution in complex marine environments where there is significant influx of sand and sediment into an estuarine environment.
Resumo:
IODP Expedition 339 drilled five sites in the Gulf of Cadiz and two off the west Iberian margin (November 2011 to January 2012), and recovered 5.5 km of sediment cores with an average recovery of 86.4%. The Gulf of Cadiz was targeted for drilling as a key location for the investigation of Mediterranean outflow water (MOW) through the Gibraltar Gateway and its influence on global circulation and climate. It is also a prime area for understanding the effects of tectonic activity on evolution of the Gibraltar Gateway and on margin sedimentation. We penetrated into the Miocene at two different sites and established a strong signal of MOW in the sedimentary record of the Gulf of Cadiz, following the opening of the Gibraltar Gateway. Preliminary results show the initiation of contourite deposition at 4.2–4.5 Ma, although subsequent research will establish whether this dates the onset of MOW. The Pliocene succession, penetrated at four sites, shows low bottom current activity linked with a weak MOW. Significant widespread unconformities, present in all sites but with hiatuses of variable duration, are interpreted as a signal of intensified MOW, coupled with flow confinement. The Quaternary succession shows a much more pronounced phase of contourite drift development, with two periods of MOW intensification separated by a widespread unconformity. Following this, the final phase of drift evolution established the contourite depositional system (CDS) architecture we see today. There is a significant climate control on this evolution of MOW and bottom-current activity. However, from the closure of the Atlantic–Mediterranean gateways in Spain and Morocco just over 6 Ma and the opening of the Gibraltar Gateway at 5.3 Ma, there has been an even stronger tectonic control on margin development, downslope sediment transport and contourite drift evolution. The Gulf of Cadiz is the world's premier contourite laboratory and thus presents an ideal testing ground for the contourite paradigm. Further study of these contourites will allow us to resolve outstanding issues related to depositional processes, drift budgets, and recognition of fossil contourites in the ancient record on shore. The expedition also verified an enormous quantity and extensive distribution of contourite sands that are clean and well sorted. These represent a relatively untapped and important exploration target for potential oil and gas reservoirs.
Resumo:
Significant lifestyle and demographic changes in Queensland are beginning to alter the landscape of regional transport planning. In 2006, Queensland Transport undertook a study to understand the implications of these changes on the transport planning task in regional Queensland. The study focused on the current travel characteristics of three Local Government Areas in the Wide Bay Burnett Region. Hervey Bay City represented the ‘sea change’ phenomenon; Wondai Shire represented the growing ‘tree change’ lifestyle; and Monto Shire represented communities which were either experiencing limited change or a decrease in population. The results of this research will be used to inform long term integrated regional transport planning in the region.
Resumo:
A letter written to Lady Chatterley, a fictional character in a novel by D H Lawrence. The topic of the letter is the influence of fictional characters on a reader's sense of self.
Resumo:
Thirteen sites in Deception Bay, Queensland, Australia were sampled three times over a period of 7 months and assessed for contamination by a range of heavy metals, primarily As, Cd, Cr, Cu, Pb and Hg. Fraction analysis, enrichment factors and Principal Components Analysis-Absolute Principal Component Scores (PCA-APCS) analysis were conducted in order to identify the potential bioavailability of these elements of concern and their sources. Hg and Te were identified as the elements of highest enrichment in Deception Bay while marine sediments, shipping and antifouling agents were identified as the sources of the Weak acid Extractable Metals (WE-M), with antifouling agents showing long residence time for mercury contamination. This has significant implications for the future of monitoring and regulation of heavy metal contamination within Deception Bay.
Resumo:
Sediment samples were taken from six sampling sites in Bramble Bay, Queensland, Australia between February and November in 2012. They were analysed for a range of heavy metals including Al, Fe, Mn, Ti, Ce, Th, U, V, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Te, Hg, Tl and Pb. Fraction analysis, enrichment factors and Principal Component Analysis –Absolute Principal Component Scores (PCA-APCS) were carried out in order to assess metal pollution, potential bioavailability and source apportionment. Cr and Ni exceeded the Australian Interim Sediment Quality Guidelines at some sampling sites, while Hg was found to be the most enriched metal. Fraction analysis identified increased weak acid soluble Hg and Cd during the sampling period. Source apportionment via PCA-APCS found four sources of metals pollution, namely, marine sediments, shipping, antifouling coatings and a mixed source. These sources need to be considered in any metal pollution control measure within Bramble Bay.
Resumo:
This paper considers the relationship between patent law and plant breeders' rights in light of modern developments in biotechnology. It examines how a number of superior courts have sought to manage the tensions and conflicts between these competing schemes of intellectual property protection. Part 1 considers the High Court of Australia case of Grain Pool of Western Australia v the Commonwealth dealing with Franklin barley. Part 2 examines the significance of the Supreme Court of the United States decision in JEM Ag Supply Inc v Pioneer Hi-Bred International Inc with respect to utility patents and hybrid seed. Part 3 considers the Supreme Court of Canada case of Harvard College v the Commissioner of Patents dealing with the transgenic animal, oncomouse, and discusses its implications for the forthcoming appeal from the Federal Court case of Percy Schmeiser v Monsanto.
Resumo:
Montserrat now provides one of the most complete datasets for understanding the character and tempo of hazardous events at volcanic islands. Much of the erupted material ends up offshore, and this offshore record may be easier to date due to intervening hemiplegic sediments between event beds. The offshore dataset includes the first scientific drilling of volcanic island landslides during IODP Expedition 340, together with an unusually comprehensive set of shallow sediment cores and 2-D and 3-D seismic surveys. Most recently in 2013, Remotely Operated Vehicle (ROV) dives mapped and sampled the surface of the main landslide deposits. This contribution aims to provide an overview of key insights from ongoing work on IODP Expedition 340 Sites offshore Montserrat.Key objectives are to understand the composition (and hence source), emplacement mechanism (and hence tsunami generation) of major landslides, together with their frequency and timing relative to volcanic eruption cycles. The most recent major collapse event is Deposit 1, which involved ~1.8 km cubed of material and produced a blocky deposit at ~12-14ka. Deposit 1 appears to have involved not only the volcanic edifice, but also a substantial component of a fringing bioclastic shelf, and material locally incorporated from the underlying seafloor. This information allows us to test how first-order landslide morphology (e.g. blocky or elongate lobes) is related to first-order landslide composition. Preliminary analysis suggests that Deposit 1 occurred shortly before a second major landslide on the SW of the island (Deposit 5). It may have initiated English's Crater, but was not associated with a major change in magma composition. An associated turbidite-stack suggests it was emplaced in multiple stages, separated by at least a few hours and thus reducing the tsunami magnitude. The ROV dives show that mega-blocks in detail comprise smaller-scale breccias, which can travel significant distances without complete disintegration. Landslide Deposit 2 was emplaced at ~130ka, and is more voluminous (~8.4km cubed). It had a much more profound influence on the magmatic system, as it was linked to a major explosive mafic eruption and formation of a new volcanic centre (South Soufriere Hills) on the island. Site U1395 confirms a hypothesis based on the site survey seismic data that Deposit 2 includes a substantial component of pre-existing seafloor sediment. However, surprisingly, this pre-existing seafloor sediment in the lower part of Deposit 2 at Site U1395 is completely undeformed and flat lying, suggesting that Site U1395 penetrated a flat lying block. Work to date material from the upper part of U1396, U1395 and U1394 will also be summarised. This work is establishing a chronostratigraphy of major events over the last 1 Ma, with particularly detailed constraints during the last ~250ka. This is helping us to understand whether major landslides are related to cycles of volcanic eruptions.
Resumo:
IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of preexisting low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or microfaulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits composed of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution data set to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes.