266 resultados para LEDS
Resumo:
El proyecto trata del desarrollo de un software para realizar el control de la medida de la distribución de intensidad luminosa en luminarias LED. En el trascurso del proyecto se expondrán fundamentos teóricos sobre fotometría básica, de los cuales se extraen las condiciones básicas para realizar dicha medida. Además se realiza una breve descripción del hardware utilizado en el desarrollo de la máquina, el cual se basa en una placa de desarrollo Arduino Mega 2560, que, gracias al paquete de Labview “LIFA” (Labview Interface For Arduino”), será posible utilizarla como tarjeta de adquisición de datos mediante la cual poder manejar tanto sensores como actuadores, para las tareas de control. El instrumento de medida utilizado en este proyecto es el BTS256 de la casa GigaHerzt-Optik, del cual se dispone de un kit de desarrollo tanto en lenguaje C++ como en Labview, haciendo posible programar aplicaciones basadas en este software para realizar cualquier tipo de adaptación a las necesidades del proyecto. El software está desarrollado en la plataforma Labview 2013, esto es gracias a que se dispone del kit de desarrollo del instrumento de medida, y del paquete LIFA. El objetivo global del proyecto es realizar la caracterización de luminarias LED, de forma que se obtengan medidas suficientes de la distribución de intensidad luminosa. Los datos se recogerán en un archivo fotométrico específico, siguiendo la normativa IESNA 2002 sobre formato de archivos fotométricos, que posteriormente será utilizado en la simulación y estudio de instalaciones reales de la luminaria. El sistema propuesto en este proyecto, es un sistema basado en fotometría tipo B, utilizando coordenadas VH, desarrollando un algoritmo de medida que la luminaria describa un ángulo de 180º en ambos ejes, con una resolución de 5º para el eje Vertical y 22.5º para el eje Horizontal, almacenando los datos en un array que será escrito en el formato exigido por la normativa. Una vez obtenidos los datos con el instrumento desarrollado, el fichero generado por la medida, es simulado con el software DIALux, obteniendo unas medidas de iluminación en la simulación que serán comparadas con las medidas reales, intentando reproducir en la simulación las condiciones reales de medida. ABSTRACT. The project involves the development of software for controlling the measurement of light intensity distribution in LEDs. In the course of the project theoretical foundations on basic photometry, of which the basic conditions for such action are extracted will be presented. Besides a brief description of the hardware used in the development of the machine, which is based on a Mega Arduino plate 2560 is made, that through the package Labview "LIFA" (Interface For Arduino Labview "), it is possible to use as data acquisition card by which to handle both sensors and actuators for control tasks. The instrument used in this project is the BTS256 of GigaHerzt-Optik house, which is available a development kit in both C ++ language as LabView, making it possible to program based on this software applications for any kind of adaptation to project needs. The software is developed in Labview 2013 platform, this is thanks to the availability of the SDK of the measuring instrument and the LIFA package. The overall objective of the project is the characterization of LED lights, so that sufficient measures the light intensity distribution are obtained. Data will be collected on a specific photometric file, following the rules IESNA 2002 on photometric format files, which will then be used in the simulation and study of actual installations of the luminaire. The proposed in this project is a system based on photometry type B system using VH coordinates, developing an algorithm as the fixture describe an angle of 180 ° in both axes, with a resolution of 5 ° to the vertical axis and 22.5º for the Horizontal axis, storing data in an array to be written in the format required by the regulations. After obtaining the data with the instrument developed, the file generated by the measure, is simulated with DIALux software, obtaining measures of lighting in the simulation will be compared with the actual measurements, trying to play in the simulation the actual measurement conditions .
Resumo:
Development of transparent oxide semiconductors (TOS) from Earth-abundant materials is of great interest for cost-effective thin film device applications, such as solar cells, light emitting diodes (LEDs), touch-sensitive displays, electronic paper, and transparent thin film transistors. The need of inexpensive or high performance electrode might be even greater for organic photovoltaic (OPV), with the goal to harvest renewable energy with inexpensive, lightweight, and cost competitive materials. The natural abundance of zinc and the wide bandgap ($sim$3.3 eV) of its oxide make it an ideal candidate. In this dissertation, I have introduced various concepts on the modulations of various surface, interface and bulk opto-electronic properties of ZnO based semiconductor for charge transport, charge selectivity and optimal device performance. I have categorized transparent semiconductors into two sub groups depending upon their role in a device. Electrodes, usually 200 to 500 nm thick, optimized for good transparency and transporting the charges to the external circuit. Here, the electrical conductivity in parallel direction to thin film, i.e bulk conductivity is important. And contacts, usually 5 to 50 nm thick, are optimized in case of solar cells for providing charge selectivity and asymmetry to manipulate the built in field inside the device for charge separation and collection. Whereas in Organic LEDs (OLEDs), contacts provide optimum energy level alignment at organic oxide interface for improved charge injections. For an optimal solar cell performance, transparent electrodes are designed with maximum transparency in the region of interest to maximize the light to pass through to the absorber layer for photo-generation, plus they are designed for minimum sheet resistance for efficient charge collection and transport. As such there is need for material with high conductivity and transparency. Doping ZnO with some common elements such as B, Al, Ga, In, Ge, Si, and F result in n-type doping with increase in carriers resulting in high conductivity electrode, with better or comparable opto-electronic properties compared to current industry-standard indium tin oxide (ITO). Furthermore, improvement in mobility due to improvement on crystallographic structure also provide alternative path for high conductivity ZnO TCOs. Implementing these two aspects, various studies were done on gallium doped zinc oxide (GZO) transparent electrode, a very promising indium free electrode. The dynamics of the superimposed RF and DC power sputtering was utilized to improve the microstructure during the thin films growth, resulting in GZO electrode with conductivity greater than 4000 S/cm and transparency greater than 90 %. Similarly, various studies on research and development of Indium Zinc Tin Oxide and Indium Zinc Oxide thin films which can be applied to flexible substrates for next generation solar cells application is presented. In these new TCO systems, understanding the role of crystallographic structure ranging from poly-crystalline to amorphous phase and the influence on the charge transport and optical transparency as well as important surface passivation and surface charge transport properties. Implementation of these electrode based on ZnO on opto-electronics devices such as OLED and OPV is complicated due to chemical interaction over time with the organic layer or with ambient. The problem of inefficient charge collection/injection due to poor understanding of interface and/or bulk property of oxide electrode exists at several oxide-organic interfaces. The surface conductivity, the work function, the formation of dipoles and the band-bending at the interfacial sites can positively or negatively impact the device performance. Detailed characterization of the surface composition both before and after various chemicals treatment of various oxide electrode can therefore provide insight into optimization of device performance. Some of the work related to controlling the interfacial chemistry associated with charge transport of transparent electrodes are discussed. Thus, the role of various pre-treatment on poly-crystalline GZO electrode and amorphous indium zinc oxide (IZO) electrode is compared and contrasted. From the study, we have found that removal of defects and self passivating defects caused by accumulation of hydroxides in the surface of both poly-crystalline GZO and amorphous IZO, are critical for improving the surface conductivity and charge transport. Further insight on how these insulating and self-passivating defects cause charge accumulation and recombination in an device is discussed. With recent rapid development of bulk-heterojunction organic photovoltaics active materials, devices employing ZnO and ZnO based electrode provide air stable and cost-competitive alternatives to traditional inorganic photovoltaics. The organic light emitting diodes (OLEDs) have already been commercialized, thus to follow in the footsteps of this technology, OPV devices need further improvement in power conversion efficiency and stable materials resulting in long device lifetimes. Use of low work function metals such as Ca/Al in standard geometry do provide good electrode for electron collection, but serious problems using low work-function metal electrodes originates from the formation of non-conductive metal oxide due to oxidation resulting in rapid device failure. Hence, using low work-function, air stable, conductive metal oxides such as ZnO as electrons collecting electrode and high work-function, air stable metals such as silver for harvesting holes, has been on the rise. Devices with degenerately doped ZnO functioning as transparent conductive electrode, or as charge selective layer in a polymer/fullerene based heterojunction, present useful device structures for investigating the functional mechanisms within OPV devices and a possible pathway towards improved air-stable high efficiency devices. Furthermore, analysis of the physical properties of the ZnO layers with varying thickness, crystallographic structure, surface chemistry and grain size deposited via various techniques such as atomic layer deposition, sputtering and solution-processed ZnO with their respective OPV device performance is discussed. We find similarity and differences in electrode property for good charge injection in OLEDs and good charge collection in OPV devices very insightful in understanding physics behind device failures and successes. In general, self-passivating surface of amorphous TCOs IZO, ZTO and IZTO forms insulating layer that hinders the charge collection. Similarly, we find modulation of the carrier concentration and the mobility in electron transport layer, namely zinc oxide thin films, very important for optimizing device performance.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Visual acuity is limited by the size and density of the smallest retinal ganglion cells, which correspond to the midget ganglion cells in primate retina and the beta- ganglion cells in cat retina, both of which have concentric receptive fields that respond at either light- On or light- Off. In contrast, the smallest ganglion cells in the rabbit retina are the local edge detectors ( LEDs), which respond to spot illumination at both light- On and light- Off. However, the LEDs do not predominate in the rabbit retina and the question arises, what role do they play in fine spatial vision? We studied the morphology and physiology of LEDs in the isolated rabbit retina and examined how their response properties are shaped by the excitatory and inhibitory inputs. Although the LEDs comprise only similar to 15% of the ganglion cells, neighboring LEDs are separated by 30 - 40 mu m on the visual streak, which is sufficient to account for the grating acuity of the rabbit. The spatial and temporal receptive- field properties of LEDs are generated by distinct inhibitory mechanisms. The strong inhibitory surround acts presynaptically to suppress both the excitation and the inhibition elicited by center stimulation. The temporal properties, characterized by sluggish onset, sustained firing, and low bandwidth, are mediated by the temporal properties of the bipolar cells and by postsynaptic interactions between the excitatory and inhibitory inputs. We propose that the LEDs signal fine spatial detail during visual fixation, when high temporal frequencies are minimal.
Resumo:
We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.
Resumo:
We report on recent progress in the generation of non-diffracting (Bessel) beams from semiconductor light sources including both edge-emitting and surface-emitting semiconductor lasers as well as light-emitting diodes (LEDs). Bessel beams at the power level of Watts with central lobe diameters of a few to tens of micrometers were achieved from compact and highly efficient lasers. The practicality of reducing the central lobe size of the Bessel beam generated with high-power broad-stripe semiconductor lasers and LEDs to a level unachievable by means of traditional focusing has been demonstrated. We also discuss an approach to exceed the limit of power density for the focusing of radiation with high beam propagation parameter M2. Finally, we consider the potential of the semiconductor lasers for applications in optical trapping/tweezing and the perspectives to replace their gas and solid-state laser counterparts for a range of implementations in optical manipulation towards lab-on-chip configurations. © 2014 Elsevier Ltd.
Resumo:
Internal quantum efficiency (IQE) of a blue high-brightness InGaN/GaN light-emitting diode (LED) was evaluated from the external quantum efficiency measured as a function of current at various temperatures ranged between 13 and 440 K. Processing the data with a novel evaluation procedure based on the ABC-model, we have determined the temperature-dependent IQE of the LED structure and light extraction efficiency of the LED chip. Separate evaluation of these parameters is helpful for further optimization of the heterostructure and chip designs. The data obtained enable making a guess on the temperature dependence of the radiative and Auger recombination coefficients, which may be important for identification of dominant mechanisms responsible for the efficiency droop in III-nitride LEDs. Thermal degradation of the LED performance in terms of the emission efficiency is also considered.
Resumo:
Visible light communications is a technology with enormous potential for a wide range of applications within next generation transmission and broadcasting technologies. VLC offers simultaneous illumination and data communications by intensity modulating the optical power emitted by LEDs operating in the visible range of the electromagnetic spectrum (~370-780 nm). The major challenge in VLC systems to date has been in improving transmission speeds, considering the low bandwidths available with commercial LED devices. Thus, to improve the spectral usage, the research community has increasingly turned to advanced modulation formats such as orthogonal frequency-division multiplexing. In this article we introduce a new modulation scheme into the VLC domain; multiband carrier-less amplitude and phase modulation (m-CAP) and describe in detail its performance within the context of bandlimited systems.
Resumo:
Efficiency of commercial 620 nm InAlGaP Golden Dragon-cased high-power LEDs has been studied under extremely high pump current density up to 4.5 kA/cm2 and pulse duration from microsecond down to sub-nanosecond range. No efficiency decrease and negligible red shift of the emission wavelength is observed in the whole range of drive currents at nanosecond-range pulses with duty cycles well below 1%. Analysis of the pulse-duration dependence of the LED efficiency and emission spectrum suggests the active region overheating to be the major mechanism of the LED efficiency reduction at higher pumping, dominating over the electron overflow and Auger recombination.
Resumo:
Thermal analysis of electronic devices is one of the most important steps for designing of modern devices. Precise thermal analysis is essential for designing an effective thermal management system of modern electronic devices such as batteries, LEDs, microelectronics, ICs, circuit boards, semiconductors and heat spreaders. For having a precise thermal analysis, the temperature profile and thermal spreading resistance of the device should be calculated by considering the geometry, property and boundary conditions. Thermal spreading resistance occurs when heat enters through a portion of a surface and flows by conduction. It is the primary source of thermal resistance when heat flows from a tiny heat source to a thin and wide heat spreader. In this thesis, analytical models for modeling the temperature behavior and thermal resistance in some common geometries of microelectronic devices such as heat channels and heat tubes are investigated. Different boundary conditions for the system are considered. Along the source plane, a combination of discretely specified heat flux, specified temperatures and adiabatic condition are studied. Along the walls of the system, adiabatic or convective cooling boundary conditions are assumed. Along the sink plane, convective cooling with constant or variable heat transfer coefficient are considered. Also, the effect of orthotropic properties is discussed. This thesis contains nine chapters. Chapter one is the introduction and shows the concepts of thermal spreading resistance besides the originality and importance of the work. Chapter two reviews the literatures on the thermal spreading resistance in the past fifty years with a focus on the recent advances. In chapters three and four, thermal resistance of a twodimensional flux channel with non-uniform convection coefficient in the heat sink plane is studied. The non-uniform convection is modeled by using two functions than can simulate a wide variety of different heat sink configurations. In chapter five, a non-symmetrical flux channel with different heat transfer coefficient along the right and left edges and sink plane is analytically modeled. Due to the edge cooling and non-symmetry, the eigenvalues of the system are defined using the heat transfer coefficient on both edges and for satisfying the orthogonality condition, a normalized function is calculated. In chapter six, thermal behavior of two-dimensional rectangular flux channel with arbitrary boundary conditions on the source plane is presented. The boundary condition along the source plane can be a combination of the first kind boundary condition (Dirichlet or prescribed temperature) and the second kind boundary condition (Neumann or prescribed heat flux). The proposed solution can be used for modeling the flux channels with numerous different source plane boundary conditions without any limitations in the number and position of heat sources. In chapter seven, temperature profile of a circular flux tube with discretely specified boundary conditions along the source plane is presented. Also, the effect of orthotropic properties are discussed. In chapter 8, a three-dimensional rectangular flux channel with a non-uniform heat convection along the heat sink plane is analytically modeled. In chapter nine, a summary of the achievements is presented and some systems are proposed for the future studies. It is worth mentioning that all the models and case studies in the thesis are compared with the Finite Element Method (FEM).
Resumo:
We report on conical refraction (CR) experiments with low-coherent light sources such as light-emitting diodes (LEDs) that demonstrated different CR patterns. The change of a pinhole size from 25 to 100 μm reduced the spatial coherence of the LED radiation and resulted in the disappearance of the dark Poggendorf ring in the Lloyd's plane. This is attributed to the interference nature of the Lloyd's distribution and is found to be in excellent agreement with the paraxial dual-cone model of CR.
Resumo:
The study of III-nitride materials (InN, GaN and AlN) gained huge research momentum after breakthroughs in the production light emitting diodes (LEDs) and laser diodes (LDs) over the past two decades. Last year, the Nobel Prize in Physics was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for inventing a new energy efficient and environmental friendly light source: blue light-emitting diode (LED) from III-nitride semiconductors in the early 1990s. Nowadays, III-nitride materials not only play an increasingly important role in the lighting technology, but also become prospective candidates in other areas, for example, the high frequency (RF) high electron mobility transistor (HEMT) and photovoltaics. These devices require the growth of high quality III-nitride films, which can be prepared using metal organic vapour phase epitaxy (MOVPE). The main aim of my thesis is to study and develop the growth of III-nitride films, including AlN, u-AlGaN, Si-doped AlGaN, and InAlN, serving as sample wafers for fabrication of ultraviolet (UV) LEDs, in order to replace the conventional bulky, expensive and environmentally harmful mercury lamp as new UV light sources. For application to UV LEDs, reducing the threading dislocation density (TDD) in AlN epilayers on sapphire substrates is a key parameter for achieving high-efficiency AlGaNbased UV emitters. In Chapter 4, after careful and systematic optimisation, a working set of conditions, the screw and edge type dislocation density in the AlN were reduced to around 2.2×108 cm-2 and 1.3×109 cm-2 , respectively, using an optimized three-step process, as estimated by TEM. An atomically smooth surface with an RMS roughness of around 0.3 nm achieved over 5×5 µm 2 AFM scale. Furthermore, the motion of the steps in a one dimension model has been proposed to describe surface morphology evolution, especially the step bunching feature found under non-optimal conditions. In Chapter 5, control of alloy composition and the maintenance of compositional uniformity across a growing epilayer surface were demonstrated for the development of u-AlGaN epilayers. Optimized conditions (i.e. a high growth temperature of 1245 °C) produced uniform and smooth film with a low RMS roughness of around 2 nm achieved in 20×20 µm 2 AFM scan. The dopant that is most commonly used to obtain n-type conductivity in AlxGa1-xN is Si. However, the incorporation of Si has been found to increase the strain relaxation and promote unintentional incorporation of other impurities (O and C) during Si-doped AlGaN growth. In Chapter 6, reducing edge-type TDs is observed to be an effective appoach to improve the electric and optical properties of Si-doped AlGaN epilayers. In addition, the maximum electron concentration of 1.3×1019 cm-3 and 6.4×1018 cm-3 were achieved in Si-doped Al0.48Ga0.52N and Al0.6Ga0.4N epilayers as measured using Hall effect. Finally, in Chapter 7, studies on the growth of InAlN/AlGaN multiple quantum well (MQW) structures were performed, and exposing InAlN QW to a higher temperature during the ramp to the growth temperature of AlGaN barrier (around 1100 °C) will suffer a significant indium (In) desorption. To overcome this issue, quasi-two-tempeature (Q2T) technique was applied to protect InAlN QW. After optimization, an intense UV emission from MQWs has been observed in the UV spectral range from 320 to 350 nm measured by room temperature photoluminescence.
Resumo:
Controlling the growth mechanism for nano-structures is one of the most critical topics in material science. In the past 10 years there has been intensive research worldwide in IIIN based nanowires for its many unique photonic and electrical properties at this scale. There are several advantages to nanostructuring III-N materials, including increased light extraction, increased device efficiency, reduction of efficiency droop, and reduction in crystallographic defect density. High defect densities that normally plague III-N materials and reduce the device efficiency are not an issue for nano-structured devices such as LEDs, due to the effective strain relaxation. Additionally regions of the light spectrum such as green and yellow, once found difficult to achieve in bulk planar LEDs, can be produced by manipulating the confinement and crystal facet growth directions of the active regions. A cheap and easily repeatable self-assembly nano-patterning technique at wafer scale was designed during this thesis for top down production of III-N nanowires. Through annealing under ammonia and N2 gas flow, the first reported dislocation defect bending was observed in III-N nanorods by in-situ transmission electron microscopy heating. By growing on these etched top down nanorods as a template, ultra-dense nanowires with apex tipped semi-polar tops were produced. The uniform spacing of 5nm between each wire is the highest reported space-filling factor at 98%. Finally by using these ultra-dense nanorods bridging the green gap of the light spectrum was possible, producing the first reported red, yellow, green light emission from a single nano-tip.
Resumo:
Solution-processed hybrid organic–inorganic lead halide perovskites are emerging as one of the most promising candidates for low-cost light-emitting diodes (LEDs). However, due to a small exciton binding energy, it is not yet possible to achieve an efficient electroluminescence within the blue wavelength region at room temperature, as is necessary for full-spectrum light sources. Here, we demonstrate efficient blue LEDs based on the colloidal, quantum-confined 2D perovskites, with precisely controlled stacking down to one-unit-cell thickness (n = 1). A variety of low-k organic host compounds are used to disperse the 2D perovskites, effectively creating a matrix of the dielectric quantum wells, which significantly boosts the exciton binding energy by the dielectric confinement effect. Through the Förster resonance energy transfer, the excitons down-convert and recombine radiatively in the 2D perovskites. We report room-temperature pure green (n = 7–10), sky blue (n = 5), pure blue (n = 3), and deep blue (n = 1) electroluminescence, with record-high external quantum efficiencies in the green-to-blue wavelength region.
Resumo:
Combining intrinsically conducting polymers with carbon nanotubes (CNT) helps in creating composites with superior electrical and thermal characteristics. These composites are capable of replacing metals and semiconductors as they possess unique combination of electrical conductivity, flexibility, stretchability, softness and bio-compatibility. Their potential for use in various organic devices such as super capacitors, printable conductors, optoelectronic devices, sensors, actuators, electrochemical devices, electromagnetic interference shielding, field effect transistors, LEDs, thermoelectrics etc. makes them excellent substitutes for present day semiconductors.However, many of these potential applications have not been fully exploited because of various open–ended challenges. Composites meant for use in organic devices require highly stable conductivity for the longevity of the devices. CNT when incorporated at specific proportions, and with special methods contributes quite positively to this end.The increasing demand for energy and depleting fossil fuel reserves has broadened the scope for research into alternative energy sources. A unique and efficient method for harnessing energy is thermoelectric energy conversion method. Here, heat is converted directly into electricity using a class of materials known as thermoelectric materials. Though polymers have low electrical conductivity and thermo power, their low thermal conductivity favours use as a thermoelectric material. The thermally disconnected, but electrically connected carrier pathways in CNT/Polymer composites can satisfy the so-called “phonon-glass/electron-crystal” property required for thermoelectric materials. Strain sensing is commonly used for monitoring in engineering, medicine, space or ocean research. Polymeric composites are ideal candidates for the manufacture of strain sensors. Conducting elastomeric composites containing CNT are widely used for this application. These CNT/Polymer composites offer resistance change over a large strain range due to the low Young‟s modulus and higher elasticity. They are also capable of covering surfaces with arbitrary curvatures.Due to the high operating frequency and bandwidth of electronic equipments electromagnetic interference (EMI) has attained the tag of an „environmental pollutant‟, affecting other electronic devices as well as living organisms. Among the EMI shielding materials, polymer composites based on carbon nanotubes show great promise. High strength and stiffness, extremely high aspect ratio, and good electrical conductivity of CNT make it a filler of choice for shielding applications. A method for better dispersion, orientation and connectivity of the CNT in polymer matrix is required to enhance conductivity and EMI shielding. This thesis presents a detailed study on the synthesis of functionalised multiwalled carbon nanotube/polyaniline composites and their application in electronic devices. The major areas focused include DC conductivity retention at high temperature, thermoelectric, strain sensing and electromagnetic interference shielding properties, thermogravimetric, dynamic mechanical and tensile analysis in addition to structural and morphological studies.