988 resultados para LATE PLEISTOCENE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analyses of water samples taken by means of an in-hole sampler generally show good agreement with analyses of samples collected by routine shipboard squeezing techniques. At Sites 438 and 439, a decrease in salinity with depth is related to former freshwater flow from an aquifer that crops out at an anticline on a deep sea terrace between Japan and the top of the trench slope of the Japan Trench. This former subaerial recharge suggests significant late Cenozoic subsidence of the terrace, because it now lies at a water depth of 1500 meters. Samples from the trench slope at Site 440 have extremely high values of alkalinity and ammonia, presumably because of a favorable combination of high sedimentation rate and organic carbon content. Diagenetic conditions on the trench slope favor formation of the Fe-Mg carbonate mineral, ankerite; at Site 440 it first occurs at a depth below the sea floor of only 29 meters in late Pleistocene strata. Undissolved diatoms persist to relatively great depth at the sites of Leg 57 because of a low geothermal gradient caused by subduction. Secondary silica lepispheres first appear at 851 meters at the most landward and warmest site, Site 438, in strata 16 million years old with an ambient temperature of 31 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Five holes were drilled at two sites in the Sea of Japan during Ocean Drilling Program (ODP) Leg 128. Site 798 is located on Oki Ridge at a depth of about 900 m. Sediment age at Site 798 ranges from Pliocene to Holocene. Site 799 is located in the Kita-Yamato Trough at depth of 2000 m and below the present calcite compensation depth (CCD); the sediment ranges from Miocene to Holocene in age. Samples from all holes contain benthic foraminifers. Faunal evidence of downslope displacement is frequent in Holes 799A and 799B. The vertical frequency distribution of some dominant species shows that significant faunal changes occur in Holes 798A-C on Oki Ridge. Based on the faunal change and the thickness of sediments, it appears that the Oki Ridge was uplifted more than 1,000 m during last 4 m.y. Benthic foraminifers also demonstrate that the water depth of Site 799 rapidly changed from upper bathyal to lower bathyal during middle Miocene time. The appearance of benthic foraminifer species common to anaerobic environments suggests that the dysaerobic to anaerobic bottom conditions existed during the evolution of the Sea of Japan. Faunal distributions also suggest that the 'Tertiary-type' species recognized in the Neogene strata of the Japan Sea coastal regions disappeared sequentially from the Sea of Japan during Pliocene to late Pleistocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This data report presents sedimentological (grain size) and geochemical (X-ray diffraction, total organic carbon, accelerator mass spectrometry radiocarbon, and percent carbonate) information obtained from the western transect (Sites 1132, 1130, and 1134) and the eastern transect (Sites 1129, 1131, and 1127) in the Great Australian Bight during Leg 182. The purpose is to quantify changing rates of sediment accumulation and changes in sediment type from the late Pleistocene and Holocene, in order to relate these changes to the well-known sea level curve that exists for this time frame. Ultimately, these data can be used to more effectively interpret lithologic variations deeper in the Pleistocene succession, which most likely represent orbitally forced sea level events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first detailed stratigraphic record from a deep-water carbonate mound in the Northeast Atlantic based on absolute datings (U/Th and AMS 14C) and stable oxygen isotope records reveals that its top sediment sequences are condensed by numerous hiatuses. According to stable isotope data, mainly sediments with an intermediate signal are preserved on the mound, while almost all fully glacial and interglacial sediments have either not been deposited or have been eroded later. The resulting hiatuses reduce the Late Pleistocene sediment accumulation at Propeller Mound to amounts smaller than the background sedimentation. The hiatuses most likely result due to the sweeping of the mound in turn with the re-establishment of vigour interglacial circulation patterns after sluggish current regimes during glacials. Thus, within the discussion if internal, fluid-driven or external environmentally driven processes control the evolution of such carbonate mounds, our findings for Propeller Mound clearly point to environmental forcing as the dominant mechanism shaping deep-water carbonate mounds in the NE Atlantic during the Late Pleistocene and Holocene.