946 resultados para Kolmogorov-Smirnov
Resumo:
EI Mikhailova, SP Sosnikhina, GA Kirillova, OA Tikholiz, VG Smirnov, RN Jones and G Jenkins (2001). Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L.). Journal of Cell Science, 114 (10), 1875-1882. Sponsorship: Russian Foundation for Basic Research (grants 00-04-48522/ 99-04-48182) RAE2008
Resumo:
The need for the ability to cluster unknown data to better understand its relationship to know data is prevalent throughout science. Besides a better understanding of the data itself or learning about a new unknown object, cluster analysis can help with processing data, data standardization, and outlier detection. Most clustering algorithms are based on known features or expectations, such as the popular partition based, hierarchical, density-based, grid based, and model based algorithms. The choice of algorithm depends on many factors, including the type of data and the reason for clustering, nearly all rely on some known properties of the data being analyzed. Recently, Li et al. proposed a new universal similarity metric, this metric needs no prior knowledge about the object. Their similarity metric is based on the Kolmogorov Complexity of objects, the objects minimal description. While the Kolmogorov Complexity of an object is not computable, in "Clustering by Compression," Cilibrasi and Vitanyi use common compression algorithms to approximate the universal similarity metric and cluster objects with high success. Unfortunately, clustering using compression does not trivially extend to higher dimensions. Here we outline a method to adapt their procedure to images. We test these techniques on images of letters of the alphabet.
Resumo:
Phase-locked loops (PLLs) are a crucial component in modern communications systems. Comprising of a phase-detector, linear filter, and controllable oscillator, they are widely used in radio receivers to retrieve the information content from remote signals. As such, they are capable of signal demodulation, phase and carrier recovery, frequency synthesis, and clock synchronization. Continuous-time PLLs are a mature area of study, and have been covered in the literature since the early classical work by Viterbi [1] in the 1950s. With the rise of computing in recent decades, discrete-time digital PLLs (DPLLs) are a more recent discipline; most of the literature published dates from the 1990s onwards. Gardner [2] is a pioneer in this area. It is our aim in this work to address the difficulties encountered by Gardner [3] in his investigation of the DPLL output phase-jitter where additive noise to the input signal is combined with frequency quantization in the local oscillator. The model we use in our novel analysis of the system is also applicable to another of the cases looked at by Gardner, that is the DPLL with a delay element integrated in the loop. This gives us the opportunity to look at this system in more detail, our analysis providing some unique insights into the variance `dip' seen by Gardner in [3]. We initially provide background on the probability theory and stochastic processes. These branches of mathematics are the basis for the study of noisy analogue and digital PLLs. We give an overview of the classical analogue PLL theory as well as the background on both the digital PLL and circle map, referencing the model proposed by Teplinsky et al. [4, 5]. For our novel work, the case of the combined frequency quantization and noisy input from [3] is investigated first numerically, and then analytically as a Markov chain via its Chapman-Kolmogorov equation. The resulting delay equation for the steady-state jitter distribution is treated using two separate asymptotic analyses to obtain approximate solutions. It is shown how the variance obtained in each case matches well to the numerical results. Other properties of the output jitter, such as the mean, are also investigated. In this way, we arrive at a more complete understanding of the interaction between quantization and input noise in the first order DPLL than is possible using simulation alone. We also do an asymptotic analysis of a particular case of the noisy first-order DPLL with delay, previously investigated by Gardner [3]. We show a unique feature of the simulation results, namely the variance `dip' seen for certain levels of input noise, is explained by this analysis. Finally, we look at the second-order DPLL with additive noise, using numerical simulations to see the effects of low levels of noise on the limit cycles. We show how these effects are similar to those seen in the noise-free loop with non-zero initial conditions.
Resumo:
info:eu-repo/semantics/published
Resumo:
A Feller–Reuter–Riley function is a Markov transition function whose corresponding semigroup maps the set of the real-valued continuous functions vanishing at infinity into itself. The aim of this paper is to investigate applications of such functions in the dual problem, Markov branching processes, and the Williams-matrix. The remarkable property of a Feller–Reuter–Riley function is that it is a Feller minimal transition function with a stable q-matrix. By using this property we are able to prove that, in the theory of branching processes, the branching property is equivalent to the requirement that the corresponding transition function satisfies the Kolmogorov forward equations associated with a stable q-matrix. It follows that the probabilistic definition and the analytic definition for Markov branching processes are actually equivalent. Also, by using this property, together with the Resolvent Decomposition Theorem, a simple analytical proof of the Williams' existence theorem with respect to the Williams-matrix is obtained. The close link between the dual problem and the Feller–Reuter–Riley transition functions is revealed. It enables us to prove that a dual transition function must satisfy the Kolmogorov forward equations. A necessary and sufficient condition for a dual transition function satisfying the Kolmogorov backward equations is also provided.
Resumo:
It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper we study the classification of spatiotemporal pattern of one-dimensional cellular automata (CA) whereas the classification comprises CA rules including their initial conditions. We propose an exploratory analysis method based on the normalized compression distance (NCD) of spatiotemporal patterns which is used as dissimilarity measure for a hierarchical clustering. Our approach is different with respect to the following points. First, the classification of spatiotemporal pattern is comparative because the NCD evaluates explicitly the difference of compressibility among two objects, e.g., strings corresponding to spatiotemporal patterns. This is in contrast to all other measures applied so far in a similar context because they are essentially univariate. Second, Kolmogorov complexity, which underlies the NCD, was used in the classification of CA with respect to their spatiotemporal pattern. Third, our method is semiautomatic allowing us to investigate hundreds or thousands of CA rules or initial conditions simultaneously to gain insights into their organizational structure. Our numerical results are not only plausible confirming previous classification attempts but also shed light on the intricate influence of random initial conditions on the classification results.
Resumo:
Spatially resolved polarization switching In ferroelectric nanocapacitors was studied on the sub-25 nm scale using the first-order reversal curve (FORC) method. The chosen capacitor geometry allows both high-veracity observation of the domain structure and mapping of polarization switching in a uniform field, synergistically combining microstructural observations and probing of uniform-field polarization responses as relevant to device operation. A classical Kolmogorov-Avrami-Ishibashi model has been adapted to the voltage domain, and the individual switching dynamics of the FORC response curves are well approximated by the adapted model. The comparison with microstructures suggests a strong spatial variability of the switching dynamics inside the nanocapacitors.
Resumo:
The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.
Resumo:
Les temps de réponse dans une tache de reconnaissance d’objets visuels diminuent de façon significative lorsque les cibles peuvent être distinguées à partir de deux attributs redondants. Le gain de redondance pour deux attributs est un résultat commun dans la littérature, mais un gain causé par trois attributs redondants n’a été observé que lorsque ces trois attributs venaient de trois modalités différentes (tactile, auditive et visuelle). La présente étude démontre que le gain de redondance pour trois attributs de la même modalité est effectivement possible. Elle inclut aussi une investigation plus détaillée des caractéristiques du gain de redondance. Celles-ci incluent, outre la diminution des temps de réponse, une diminution des temps de réponses minimaux particulièrement et une augmentation de la symétrie de la distribution des temps de réponse. Cette étude présente des indices que ni les modèles de course, ni les modèles de coactivation ne sont en mesure d’expliquer l’ensemble des caractéristiques du gain de redondance. Dans ce contexte, nous introduisons une nouvelle méthode pour évaluer le triple gain de redondance basée sur la performance des cibles doublement redondantes. Le modèle de cascade est présenté afin d’expliquer les résultats de cette étude. Ce modèle comporte plusieurs voies de traitement qui sont déclenchées par une cascade d’activations avant de satisfaire un seul critère de décision. Il offre une approche homogène aux recherches antérieures sur le gain de redondance. L’analyse des caractéristiques des distributions de temps de réponse, soit leur moyenne, leur symétrie, leur décalage ou leur étendue, est un outil essentiel pour cette étude. Il était important de trouver un test statistique capable de refléter les différences au niveau de toutes ces caractéristiques. Nous abordons la problématique d’analyser les temps de réponse sans perte d’information, ainsi que l’insuffisance des méthodes d’analyse communes dans ce contexte, comme grouper les temps de réponses de plusieurs participants (e. g. Vincentizing). Les tests de distributions, le plus connu étant le test de Kolmogorov- Smirnoff, constituent une meilleure alternative pour comparer des distributions, celles des temps de réponse en particulier. Un test encore inconnu en psychologie est introduit : le test d’Anderson-Darling à deux échantillons. Les deux tests sont comparés, et puis nous présentons des indices concluants démontrant la puissance du test d’Anderson-Darling : en comparant des distributions qui varient seulement au niveau de (1) leur décalage, (2) leur étendue, (3) leur symétrie, ou (4) leurs extrémités, nous pouvons affirmer que le test d’Anderson-Darling reconnait mieux les différences. De plus, le test d’Anderson-Darling a un taux d’erreur de type I qui correspond exactement à l’alpha tandis que le test de Kolmogorov-Smirnoff est trop conservateur. En conséquence, le test d’Anderson-Darling nécessite moins de données pour atteindre une puissance statistique suffisante.