872 resultados para Knowledge-based society. Knowledge management
Resumo:
Management accounting guideline
Resumo:
In order to exploit the adaptability of a SOA infrastructure, it becomes necessary to provide platform mechanisms that support a mapping of the variability in the applications to the variability provided by the infrastructure. The approach focuses on the configuration of the needed infrastructure mechanisms including support for the derivation of the infrastructure variability model.
Resumo:
Abstract Purpose – The purpose of this paper is to present a case study regarding the deployment of a previously developed model for the integration of management systems (MSs). The case study is developed at a manufacturing site of an international enterprise. The implementation of this model in a real business environment is aimed at assessing its feasibility. Design/methodology/approach – The presented case study takes into account different management systems standards (MSSs) progressively implemented, along the years, independently. The implementation of the model was supported by the results obtained from an investigation performed according to a structured diagnosis that was conducted to collect information related to the organizational situation of the enterprise. Findings – The main findings are as follows: a robust integrated management system (IMS), objectively more lean, structured and manageable was found to be feasible; this study provided an holistic view of the enterprise’s global management; clarifications of job descriptions and boundaries of action and responsibilities were achieved; greater efficiency in the use of resources was attained; more coordinated management of the three pillars of sustainability – environmental, economic and social, as well as risks, providing confidence and added value to the company and interested parties was achieved. Originality/value – This case study is pioneering in Portugal in respect to the implementation, at the level of an industrial organization, of the model previously developed for the integration of individualized MSs. The case study provides new insights regarding the implementation of IMSs including the rationalization of several resources and elimination of several types of organizational waste leveraging gains of efficiency. Due to its intrinsic characteristics, the model is able to support, progressively, new or revised MSSs according to the principles of annex SL (normative) – proposals for MSSs – of the International Organization for Standardization and the International Electrotechnical Commission, that the industrial organization can adopt beyond the current ones.
Resumo:
In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.
Resumo:
This PhD work arises from the necessity to give a contribution to the energy saving field, regarding automotive applications. The aim was to produce a multidisciplinary work to show how much important is to consider different aspects of an electric car realization: from innovative materials to cutting-edge battery thermal management systems (BTMSs), also dealing with the life cycle assessment (LCA) of the battery packs (BPs). Regarding the materials, it has been chosen to focus on carbon fiber composites as their use allows realizing light products with great mechanical properties. Processes and methods to produce carbon fiber goods have been analysed with a special attention on the university solar car Emilia 4. The work proceeds dealing with the common BTMSs on the market (air-cooled, cooling plates, heat pipes) and then it deepens some of the most innovative systems such as the PCM-based BTMSs after a previous experimental campaign to characterize the PCMs. After that, a complex experimental campaign regarding the PCM-based BTMSs has been carried on, considering both uninsulated and insulated systems. About the first category the tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs; the insulated tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs and both of these systems equipped with a liquid cooling circuit. The choice of lighter building materials and the optimization of the BTMS are strategies which helps in reducing the energy consumption, considering both the energy required by the car to move and the BP state of health (SOH). Focusing on this last factor, a clear explanation regarding the importance of taking care about the SOH is given by the analysis of a BP production energy consumption. This is why a final dissertation about the life cycle assessment (LCA) of a BP unit has been presented in this thesis.
Resumo:
In this article, we draw together aspects of contemporary theories of knowledge (particularly organisational knowledge) and complexity theory to demonstrate how appropriate conceptual rigor enables both the role of government and the directions of policy development in knowledge-based economies to be identified. Specifically we ask, what is the role of government in helping shape the knowledge society of the future? We argue that knowledge policy regimes must go beyond the modes of policy analysis currently used in innovation, information and technology policy because they are based in an industrial rather than post-industrial analytical framework. We also argue that if we are to develop knowledge-based economies, more encompassing images of the future than currently obtain in policy discourse are required. We therefore seek to stimulate and provoke an array of lines of thought about government and policy for such economies. Our objective is to focus on ideas more than argument and persuasion.
Resumo:
The knowledge-based society we live in has stressed the importance of human capital and brought talent to the top of most wanted skills, especially to companies who want to succeed in turbulent environments worldwide. In fact, streams, sequences of decisions and resource commitments characterize the day-to-day of multinational companies (MNCs). Such decision-making activities encompass major strategic moves like internationalization and new market entries or diversification and acquisitions. In most companies, these strategic decisions are extensively discussed and debated and are generally framed, formulated, and articulated in specialized language often developed by the best minds in the company. Yet the language used in such deliberations, in detailing and enacting the implementation strategy is usually taken for granted and receives little if any explicit attention (Brannen & Doz, 2012) an can still be a “forgotten factor” (Marschan et al. 1997). Literature on language management and international business refers to lack of awareness of business managers of the impact that language can have not only in communication effectiveness but especially in knowledge transfer and knowledge management in business environments. In the context of MNCs, management is, for many different reasons, more complex and demanding than that of a national company, mainly because of diversity factors inherent to internationalization, namely geographical and cultural spaces, i.e, varied mindsets. Moreover, the way of functioning, and managing language, of the MNC depends on its vision, its values and its internationalization model, i.e on in the way the MNE adapts to and controls the new markets, which can vary essentially from a more ethnocentric to a more pluricentric focus. Regardless of the internationalization model followed by the MNC, communication between different business units is essential to achieve unity in diversity and business sustainability. For the business flow and prosperity, inter-subsidiary, intra-company and company-client (customers, suppliers, governments, municipalities, etc..) communication must work in various directions and levels of the organization. If not well managed, this diversity can be a barrier to global coordination and create turbulent environments, even if a good technological support is available (Feely et al., 2002: 4). According to Marchan-Piekkari (1999) the tongue can be both (i) a barrier, (ii) a facilitator and (iii) a source of power. Moreover, the lack of preparation for the barriers of linguistic diversity can lead to various costs, including negotiations’ failure and failure on internationalization.. On the other hand, communication and language fluency is not just a message transfer procedure, but above all a knowledge transfer process, which requires extra-linguistic skills (persuasion, assertiveness …) in order to promote credibility of both parties. For this reason, MNCs need a common code to communicate and trade information inside and outside the company, which will require one or more strategies, in order to overcome possible barriers and organization distortions.
Resumo:
Some 50% of the people in the world live in rural areas, often under harsh conditions and in poverty. The need for knowledge of how to improve living conditions is well documented. In response to this need, new knowledge of how to improve living conditions in rural areas and elsewhere is continuously being developed by researchers and practitioners around the world. People in rural areas, in particular, would certainly benefit from being able to share relevant knowledge with each other, as well as with stakeholders (e.g. researchers) and other organizations (e.g. NGOs). Central to knowledge management is the idea of knowledge sharing. This study is based on the assumption that knowledge management can support sustainable development in rural and remote regions. It aims to present a framework for knowledge management in sustainable rural development, and an inventory of existing frameworks for that. The study is interpretive, with interviews as the primary source for the inventory of stakeholders, knowledge categories and Information and Communications Technology (ICT) infrastructure. For the inventory of frameworks, a literature study was carried out. The result is a categorization of the stakeholders who act as producers and beneficiaries of explicit and indigenous development knowledge. Stakeholders are local government, local population, academia, NGOs, civil society and donor agencies. Furthermore, the study presents a categorization of the development knowledge produced by the stakeholders together with specifications for the existing ICT infrastructure. Rural development categories found are research, funding, agriculture, ICT, gender, institutional development, local infrastructure development, and marketing & enterprise. Finally, a compiled framework is presented, and it is based on ten existing frameworks for rural development that were found in the literature study, and the empirical findings of the Gilgit-Baltistan case. Our proposed framework is divided in four levels where level one consists of the identified stakeholders, level two consists of rural development categories, level three of the knowledge management system and level four of sustainable rural development based on the levels below. In the proposed framework we claim that the sustainability of rural development can be achieved through a knowledge society in which knowledge of the rural development process is shared among all relevant stakeholders.
Resumo:
A risks management, carried on in an effective way, leads the software development to success and may influence on the organization. The knowledge takes part of such a process as a way to help taking decisions. This research aimed to analyze the use of Knowledge Management techniques to the Risk Management in software projects development and the possible influence on the enterprise revenue. It had, as its main studying subject, Brazilian incubated and graduated software developing enterprises. The chosen research method was the Survey type. Multivariate statistical methods were used for the treatment and analysis of the obtained results, this way identifying the most significant factors, that is, enterprise's achievement constraining factors and those outcome achievement ones. Among the latter we highlight the knowledge methodology, the time of existence of the enterprise, the amount of employees and the knowledge externalization. The results encourage contributing actions to the increasing of financial revenue. © 2013 Springer-Verlag.
Resumo:
The aim of this research is to investigate how risk management in a healthcare organisation can be supported by knowledge management. The subject of research is the development and management of existing logs called "risk registers", through specific risk management processes employed in a N.H.S. (Foundation) Trust in England, in the U.K. Existing literature on organisational risk management stresses the importance of knowledge for the effective implementation of risk management programmes, claiming that knowledge used to perceive risk is biased by the beliefs of individuals and groups involved in risk management and therefore is considered incomplete. Further, literature on organisational knowledge management presents several definitions and categorisations of knowledge and approaches for knowledge manipulation in the organisational context as a whole. However, there is no specific approach regarding "how to deal" with knowledge in the course of organisational risk management. The research is based on a single case study, on a N.H.S. (Foundation) Trust, is influenced by principles of interpretivism and the frame of mind of Soft Systems Methodology (S.S.M.) to investigate the management of risk registers, from the viewpoint of people involved in the situation. Data revealed that knowledge about risks and about the existing risk management policy and procedures is situated in several locations in the Trust and is neither consolidated nor present where and when required. This study proposes a framework that identifies required knowledge for each of the risk management processes and outlines methods for conversion of this knowledge, based on the SECI knowledge conversion model, and activities to facilitate knowledge conversion so that knowledge is effectively used for the development of risk registers and the monitoring of risks throughout the whole Trust under study. This study has theoretical impact in the management science literature as it addresses the issue of incomplete knowledge raised in the risk management literature using concepts of the knowledge management literature, such as the knowledge conversion model. In essence, the combination of required risk and risk management related knowledge with the required type of communication for risk management creates the proposed methods for the support of each risk management process for the risk registers. Further, the indication of the importance of knowledge in risk management and the presentation of a framework that consolidates knowledge required for the risk management processes and proposes way(s) for the communication of this knowledge within a healthcare organisation have practical impact in the management of healthcare organisations.
Resumo:
Knowledge-Based Management Systems enable new ways to process and analyse knowledge to gain better insights to solve a problem and aid in decision making. In the police force such systems provide a solution for enhancing operations and improving client administration in terms of knowledge management. The main objectives of every police officer is to ensure the security of life and property, promote lawfulness, and avert and distinguish wrongdoing. The administration of knowledge and information is an essential part of policing, and the police ought to be proactive in directing both explicit and implicit knowledge, whilst adding to their abilities in knowledge sharing. In this paper the potential for a knowledge based system for the Mauritius police was analysed, and recommendations were also made, based on requirements captured from interviews with several long standing officers, and surveying of previous works in the area.
Resumo:
Paper presented at the 8th European Conference on Knowledge Management, Barcelona, 6-7 Sep. 2008 URL: http://www.academic-conferences.org/eckm/eckm2007/eckm07-home.htm
Resumo:
Versão editor: http://www.isegi.unl.pt/docentes/acorreia/documentos/European_Challenge_KM_Innovation_2004.pdf
Resumo:
7th Mediterranean Conference on Information Systems, MCIS 2012, Guimaraes, Portugal, September 8-10, 2012, Proceedings Series: Lecture Notes in Business Information Processing, Vol. 129
Resumo:
The paper examines change processes und future perspectives in the knowledge society. It presents the clothing and textile industry as an example for a transforming industry in a global economy. The paper reviews existing future studies, which have surveyed change processes and future developments in the clothing and textile industry. Main goals of the review are the identification of changes in work and the description of the restructuring of global value chains within the clothing and textile sector. The paper also highlights major current trends, drivers of change and future prospects in this sector.