912 resultados para Kello, John, fl. 1567.
Resumo:
http://www.archive.org/details/johnludwigkrapfe00kretiala
Resumo:
http://www.archive.org/details/fortyyearsamongt00craiuoft
Resumo:
http://www.archive.org/details/historyofcatholi00sheaiala
Resumo:
http://www.archive.org/details/jamesevans00maclrich
Resumo:
http://name.umdl.umich.edu/ABB4262
Resumo:
http://www.archive.org/details/womeninthemissio00telfuoft
Resumo:
http://www.archive.org/details/johnwesleytheman00pikeuoft
Resumo:
http://www.archive.org/details/missionarypionee00stewrich
Resumo:
http://www.archive.org/details/75yearsmadurami00chanuoft
Resumo:
http://www.archive.org/details/bibleillustratio00ingluoft
Resumo:
Throughout the history of the Church, the Epistle to the Hebrews has been one of the most puzzling letters in the Canon, particularly regarding the implications of understanding the person of Jesus Christ. John Chrysostom, an important patristic writer, is acknowledged to have made significant contributions to the exegesis of this letter. Chrysostom's thought became the norm for traditional thinking and interpretation of this letter in the Middle Ages. Martin Luther's reception of Chrysostom's Homilies on Hebrews presents a unique interpretation that some scholars may describe as the "Reformation Discovery" on Hebrews. In tracing Luther's reception and appropriation of Chrysostom's exegesis of the letter to the Hebrews, there is a noticeable and significant shift in Christological interpretation. Whether or not these modifications were necessary is a matter of debate; however, they do reflect Luther's contextual and existential questions regarding faith, Christ and knowledge of God, which is evident in his Lectures on Hebrews.
Resumo:
This thesis is focused on the investigation of magnetic materials for high-power dcdc converters in hybrid and fuel cell vehicles and the development of an optimized high-power inductor for a multi-phase converter. The thesis introduces the power system architectures for hybrid and fuel cell vehicles. The requirements for power electronic converters are established and the dc-dc converter topologies of interest are introduced. A compact and efficient inductor is critical to reduce the overall cost, weight and volume of the dc-dc converter and optimize vehicle driving range and traction power. Firstly, materials suitable for a gapped CC-core inductor are analyzed and investigated. A novel inductor-design algorithm is developed and automated in order to compare and contrast the various magnetic materials over a range of frequencies and ripple ratios. The algorithm is developed for foil-wound inductors with gapped CC-cores in the low (10 kHz) to medium (30 kHz) frequency range and investigates the materials in a natural-convection-cooled environment. The practical effects of frequency, ripple, air-gap fringing, and thermal configuration are investigated next for the iron-based amorphous metal and 6.5 % silicon steel materials. A 2.5 kW converter is built to verify the optimum material selection and thermal configuration over the frequency range and ripple ratios of interest. Inductor size can increase in both of these laminated materials due to increased airgap fringing losses. Distributing the airgap is demonstrated to reduce the inductor losses and size but has practical limitations for iron-based amorphous metal cores. The effects of the manufacturing process are shown to degrade the iron-based amorphous metal multi-cut core loss. The experimental results also suggest that gap loss is not a significant consideration in these experiments. The predicted losses by the equation developed by Reuben Lee and cited by Colonel McLyman are significantly higher than the experimental results suggest. Iron-based amorphous metal has better preformance than 6.5 % silicon steel when a single cut core and natural-convection-cooling are used. Conduction cooling, rather than natural convection, can result in the highest power density inductor. The cooling for these laminated materials is very dependent on the direction of the lamination and the component mounting. Experimental results are produced showing the effects of lamination direction on the cooling path. A significant temperature reduction is demonstrated for conduction cooling versus natural-convection cooling. Iron-based amorphous metal and 6.5% silicon steel are competitive materials when conduction cooled. A novel inductor design algorithm is developed for foil-wound inductors with gapped CC-cores for conduction cooling of core and copper. Again, conduction cooling, rather than natural convection, is shown to reduce the size and weight of the inductor. The weight of the 6.5 % silicon steel inductor is reduced by around a factor of ten compared to natural-convection cooling due to the high thermal conductivity of the material. The conduction cooling algorithm is used to develop high-power custom inductors for use in a high power multi-phase boost converter. Finally, a high power digitally-controlled multi-phase boost converter system is designed and constructed to test the high-power inductors. The performance of the inductors is compared to the predictions used in the design process and very good correlation is achieved. The thesis results have been documented at IEEE APEC, PESC and IAS conferences in 2007 and at the IEEE EPE conference in 2008.
Resumo:
Paris
Resumo:
info:eu-repo/semantics/published
Resumo:
In the fall of 1989, emergency excavation was undertaken in conjunction with restoration work at the John Brice II (Jennings-Brice) House, 18AP53. The exact date of construction for this brick home is problematic, and it was hoped that archaeological investigation could provide conclusive evidence to firmly establish the structure's date of construction. Excavation of one 5 X 5 ft. unit revealed the presence of 10 separate soil layers and four features of note, described in detail below. Unfortunately, no builders trench or similar feature by which we might date the house's construction was recovered. Future plans and possibilities for excavation at the property are outlined with the hopes of performing subsequent work at this rich site. We anticipate a focus on the arrangement and changes in use of the houselot, amassing evidence to support the presence of a vernacular garden on the property during the 18th century, as well as researching refuse disposal patterns, and clues to changing lifeways through the 18th century.