932 resultados para Judgment (Logic)
Resumo:
Chemical species can serve as inputs to supramolecular devices so that a luminescence output is created in a conditional manner. Conditionality is built into these devices by employing the classical photochemical process of photoinduced electron transfer (PET) to compete with luminescence emission. The response of these devices in the analogue regime leads to sensors that can operate in nanometric, micrometric, and millimetric spaces. Some of these devices serve in membrane science, cell physiology, and medical diagnostics. The response in the digital regime leads to Boolean logic gates. Some of these find application in improving aspects of medical diagnostics and in identifying small objects in large populations.
Resumo:
The competition between Photoinduced electron transfer (PET) and other de-excitation pathways such as fluorescence and phosphorescence can be controlled within designed molecular structures. Depending on the particular design, the resulting optical output is thus a function of various inputs such as ion concentration and excitation light dose. Once digitized into binary code, these input-output patterns can be interpreted according to Boolean logic. The single-input logic types of YES and NOT cover simple sensors and the double- (or higher-) input logic types represent other gates such as AND and OR. The logic-based arithmetic processors such as half-adders and half-subtractors are also featured. Naturally, a principal application of the more complex gates is in multi-sensing contexts.
Resumo:
AND logic gate behaviour can be recognized in chemical-responsive luminescence phenomena concerning small molecules. Though initial developments concerned separate and distinguishable chemical species as inputs, consideration of other types of input sets allows substantial expansion of the sub-field. Dissection of these molecular devices into modules, where possible, enables analysis of their logic behaviour according to supramolecular photochemical mechanisms.
Resumo:
Chemists are now able to emulate the ideas and instruments of mathematics and computer science with molecules. The integration of molecular logic gates into small arrays has been a growth area during the last few years. The design principles underlying a collection of these cases are examined. Some of these computing molecules are applicable in medical- and biotechnologies. Cases of blood diagnostics, 'lab-on-a-molecule' systems, and molecular computational identification of small objects are included.
Resumo:
Shapememoryalloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics and so on. Nonlinearity hysteresis effects existing in SMA actuators present a problem in the motion control of these smart actuators. This paper investigates the control problem of SMA actuators in both simulation and experiment. In the simulation, the numerical Preisachmodel with geometrical interpretation is used for hysteresis modeling of SMA actuators. This model is then incorporated in a closed loop PID control strategy. The optimal values of PID parameters are determined by using geneticalgorithm to minimize the mean squared error between desired output displacement and simulated output. However, the control performance is not good compared with the simulation results when these parameters are applied to the real SMA control since the system is disturbed by unknown factors and changes in the surrounding environment of the system. A further automated readjustment of the PID parameters using fuzzylogic is proposed for compensating the limitation. To demonstrate the effectiveness of the proposed controller, real time control experiment results are presented.
Resumo:
This article adapts and expands a recent model of ethnic competition by exploring its implications over a long period spanning crucial stages in the modernisation of the political system. It illustrates the model by reference to developments in Northern Ireland since its modern party system was launched in the 1880s. This offers an exceptionally clear example of the interaction of central elements of the model: the initial bedding down of a system of bipartisan ethnic competition, with two parties having a remarkable capacity to resist ethnic outbidding; the fragmentation of this system following the introduction of a set of major institutional forms that facilitated ethnic outbidding; and the continuing resilience of ethnically based parties in warding off challenges from groups seeking to prioritise other political dimensions. The model's implications are tested against a comprehensive collection of ecological and survey data.
Resumo:
We examined the relationship between cognitive capacity and heuristic responding on four types of reasoning and decision-making tasks. A total of 84 children, between 5 years 2 months and 11 years 7 months of age, participated in the study. There was a marked increase in heuristic responding with age that was related to increases in cognitive capacity. These findings are inconsistent with the predominant dual-process accounts of reasoning and decision making as applied to development. We offer an alternative explanation of the findings, considering them in the context of recent claims concerning the role of working memory in contextualized reasoning.
Resumo:
This study examined performance on transitive inference problems in children with developmental dyscalculia (DD), typically developing controls matched on IQ, working memory and reading skills, and in children with outstanding mathematical abilities. Whereas mainstream approaches currently consider DD as a domain-specific deficit, we hypothesized that the development of mathematical skills is closely related to the development of logical abilities, a domain-general skill. In particular, we expected a close link between mathematical skills and the ability to reason independently of one's beliefs. Our results showed that this was indeed the case, with children with DD performing more poorly than controls, and high maths ability children showing outstanding skills in logical reasoning about belief-laden problems. Nevertheless, all groups performed poorly on structurally equivalent problems with belief-neutral content. This is in line with suggestions that abstract reasoning skills (i.e. the ability to reason about content without real-life referents) develops later than the ability to reason about belief-inconsistent fantasy content.A video abstract of this article can be viewed at http://www.youtube.com/watch?v=90DWY3O4xx8.
Dual-processes in learning and judgment:Evidence from the multiple cue probability learning paradigm
Resumo:
Multiple cue probability learning (MCPL) involves learning to predict a criterion based on a set of novel cues when feedback is provided in response to each judgment made. But to what extent does MCPL require controlled attention and explicit hypothesis testing? The results of two experiments show that this depends on cue polarity. Learning about cues that predict positively is aided by automatic cognitive processes, whereas learning about cues that predict negatively is especially demanding on controlled attention and hypothesis testing processes. In the studies reported here, negative, but not positive cue learning related to individual differences in working memory capacity both on measures of overall judgment performance and modelling of the implicit learning process. However, the introduction of a novel method to monitor participants' explicit beliefs about a set of cues on a trial-by-trial basis revealed that participants were engaged in explicit hypothesis testing about positive and negative cues, and explicit beliefs about both types of cues were linked to working memory capacity. Taken together, our results indicate that while people are engaged in explicit hypothesis testing during cue learning, explicit beliefs are applied to judgment only when cues are negative. © 2012 Elsevier Inc.
Resumo:
Belief merging is an important but difficult problem in Artificial Intelligence, especially when sources of information are pervaded with uncertainty. Many merging operators have been proposed to deal with this problem in possibilistic logic, a weighted logic which is powerful for handling inconsistency and deal-ing with uncertainty. They often result in a possibilistic knowledge base which is a set of weighted formulas. Although possibilistic logic is inconsistency tolerant, it suffers from the well-known "drowning effect". Therefore, we may still want to obtain a consistent possibilistic knowledge base as the result of merging. In such a case, we argue that it is not always necessary to keep weighted information after merging. In this paper, we define a merging operator that maps a set of possibilistic knowledge bases and a formula representing the integrity constraints to a classical knowledge base by using lexicographic ordering. We show that it satisfies nine postulates that generalize basic postulates for propositional merging given in [11]. These postulates capture the principle of minimal change in some sense. We then provide an algorithm for generating the resulting knowledge base of our merging operator. Finally, we discuss the compatibility of our merging operator with propositional merging and establish the advantage of our merging operator over existing semantic merging operators in the propositional case.
Resumo:
Individuals who have been subtly reminded of death display heightened in-group favouritism, or “worldview defense.” Terror management theory argues (i) that death cues engender worldview defense via psychological mechanisms specifically evolved to suppress death anxiety, and (ii) that the core function of religiosity is to suppress death anxiety. Thus, terror management theory predicts that extremely religious individuals will not evince worldview defense. Here, two studies are presented in support of an alternative perspective. According to the unconscious vigilance hypothesis, subtly processed threats (which need not pertain to death) heighten sensitivity to affectively valenced stimuli (which need not pertain to cultural attitudes). From this perspective, religiosity mitigates the influence of mortality-salience only insofar as afterlife doctrines reduce the perceived threat posed by death. Tibetan Buddhism portrays death as a perilous gateway to rebirth rather than an end to suffering; faith in this doctrine should therefore not be expected to nullify mortality-salience effects. In Study 1, devout Tibetan Buddhists who were subtly reminded of death produced exaggerated aesthetic ratings unrelated to cultural worldviews. In Study 2, devout Tibetan Buddhists produced worldview defense following subliminal exposure to non-death cues of threat. The results demonstrate both the domain-generality of the process underlying worldview defense and the importance of religious doctrinal content in moderating mortality-salience effects.
Resumo:
Several logic gates and switches can be accessed from two different combinations of a single set of fluorophore, receptor and spacer components.