362 resultados para Jamming Cancellation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In terrestrial television transmission multiple paths of various lengths can occur between the transmitter and the receiver. Such paths occur because of reflections from objects outside the direct transmission path. The multipath signals arriving at the receiver are all detected along with the intended signal causing time displaced replicas called 'ghosts' to appear on the television picture. With an increasing number of people living within built up areas, ghosting is becoming commonplace and therefore deghosting is becoming increasingly important. This thesis uses a deterministic time domain approach to deghosting, resulting in a simple solution to the problem of removing ghosts. A new video detector is presented which reduces the synchronous detector local oscillator phase error, caused by any practical size of ghost, to a lower level than has ever previously been achieved. From the new detector, dispersion of the video signal is minimised and a known closed-form time domain description of the individual ghost components within the detected video is subsequently obtained. Developed from mathematical descriptions of the detected video, a new specific deghoster filter structure is presented which is capable of removing both inphase (I) and also the phase quadrature (Q) induced ghost signals derived from the VSB operation. The new deghoster filter requires much less hardware than any previous deghoster which is capable of removing both I and Q ghost components. A new channel identification algorithm was also required and written which is based upon simple correlation techniques to find the delay and complex amplitude characteristics of individual ghosts. The result of the channel identification is then passed to the new I and Q deghoster filter for ghost cancellation. Generated from the research work performed for this thesis, five papers have been published. D

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Idealised convection-permitting simulations are used to quantify the impact of embedded convection on the precipitation generated by moist flow over midlatitude mountain ridges. A broad range of mountain dimensions and moist stabilities are considered to encompass a spectrum of physically plausible flows. The simulations reveal that convection only enhances orographic precipitation in cap clouds that are otherwise unable to efficiently convert cloud condensate into precipitate. For tall and wide mountains (e.g. the Washington Cascades or the southern Andes), precipitate forms efficiently through vapour deposition and collection, even in the absence of embedded convection. When embedded convection develops in such clouds, it produces competing effects (enhanced condensation in updraughts and enhanced evaporation through turbulent mixing and compensating subsidence) that cancel to yield little net change in precipitation. By contrast, convection strongly enhances precipitation over short and narrow mountains (e.g. the UK Pennines or the Oregon Coastal Range) where precipitation formation is otherwise highly inefficient. Although cancellation between increased condensation and evaporation still occurs, the enhanced precipitation formation within the convective updraughts leads to a net increase in precipitation efficiency. The simulations are physically interpreted through non-dimensional diagnostics and relevant time-scales that govern advective, microphysical, and convective processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emissions of exhaust gases and particles from oceangoing ships are a significant and growing contributor to the total emissions from the transportation sector. We present an assessment of the contribution of gaseous and particulate emissions from oceangoing shipping to anthropogenic emissions and air quality. We also assess the degradation in human health and climate change created by these emissions. Regulating ship emissions requires comprehensive knowledge of current fuel consumption and emissions, understanding of their impact on atmospheric composition and climate, and projections of potential future evolutions and mitigation options. Nearly 70% of ship emissions occur within 400 km of coastlines, causing air quality problems through the formation of ground-level ozone, sulphur emissions and particulate matter in coastal areas and harbours with heavy traffic. Furthermore, ozone and aerosol precursor emissions as well as their derivative species from ships may be transported in the atmosphere over several hundreds of kilometres, and thus contribute to air quality problems further inland, even though they are emitted at sea. In addition, ship emissions impact climate. Recent studies indicate that the cooling due to altered clouds far outweighs the warming effects from greenhouse gases such as carbon dioxide (CO2) or ozone from shipping, overall causing a negative present-day radiative forcing (RF). Current efforts to reduce sulphur and other pollutants from shipping may modify this. However, given the short residence time of sulphate compared to CO2, the climate response from sulphate is of the order decades while that of CO2 is centuries. The climatic trade-off between positive and negative radiative forcing is still a topic of scientific research, but from what is currently known, a simple cancellation of global mean forcing components is potentially inappropriate and a more comprehensive assessment metric is required. The CO2 equivalent emissions using the global temperature change potential (GTP) metric indicate that after 50 years the net global mean effect of current emissions is close to zero through cancellation of warming by CO2 and cooling by sulphate and nitrogen oxides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During long-range transport, many distinct processes – including photochemistry, deposition, emissions and mixing – contribute to the transformation of air mass composition. Partitioning the effects of different processes can be useful when considering the sensitivity of chemical transformation to, for example, a changing environment or anthropogenic influence. However, transformation is not observed directly, since mixing ratios are measured, and models must be used to relate changes to processes. Here, four cases from the ITCT-Lagrangian 2004 experiment are studied. In each case, aircraft intercepted a distinct air mass several times during transport over the North Atlantic, providing a unique dataset and quantifying the net changes in composition from all processes. A new framework is presented to deconstruct the change in O3 mixing ratio (Δ O3) into its component processes, which were not measured directly, taking into account the uncertainty in measurements, initial air mass variability and its time evolution. The results show that the net chemical processing (Δ O3chem) over the whole simulation is greater than net physical processing (Δ O3phys) in all cases. This is in part explained by cancellation effects associated with mixing. In contrast, each case is in a regime of either net photochemical destruction (lower tropospheric transport) or production (an upper tropospheric biomass burning case). However, physical processes influence O3 indirectly through addition or removal of precursor gases, so that changes to physical parameters in a model can have a larger effect on Δ O3chem than Δ O3phys. Despite its smaller magnitude, the physical processing distinguishes the lower tropospheric export cases, since the net photochemical O3 change is −5 ppbv per day in all three cases. Processing is quantified using a Lagrangian photochemical model with a novel method for simulating mixing through an ensemble of trajectories and a background profile that evolves with them. The model is able to simulate the magnitude and variability of the observations (of O3, CO, NOy and some hydrocarbons) and is consistent with the time-average OH following air-masses inferred from hydrocarbon measurements alone (by Arnold et al., 2007). Therefore, it is a useful new method to simulate air mass evolution and variability, and its sensitivity to process parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate ozone changes from preindustrial times to the present using a chemistry-climate model. The influence of changes in physical climate, ozone-depleting substances, N2O, and tropospheric ozone precursors is estimated using equilibrium simulations with these different factors set at either preindustrial or present-day values. When these effects are combined, the entire decrease in total column ozone from preindustrial to present day is very small (–1.8 DU) in the global annual average, though with significant decreases in total column ozone over large parts of the Southern Hemisphere during austral spring and widespread increases in column ozone over the Northern Hemisphere during boreal summer. A significant contribution to the total ozone column change is the increase in lower stratospheric ozone associated with the increase in ozone precursors (5.9 DU). Also noteworthy is the near cancellation of the global average climate change effect on ozone (3.5 DU) by the increase in N2O (–3.9 DU).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current state of the art in the planning and coordination of autonomous vehicles is based upon the presence of speed lanes. In a traffic scenario where there is a large diversity between vehicles the removal of speed lanes can generate a significantly higher traffic bandwidth. Vehicle navigation in such unorganized traffic is considered. An evolutionary based trajectory planning technique has the advantages of making driving efficient and safe, however it also has to surpass the hurdle of computational cost. In this paper, we propose a real time genetic algorithm with Bezier curves for trajectory planning. The main contribution is the integration of vehicle following and overtaking behaviour for general traffic as heuristics for the coordination between vehicles. The resultant coordination strategy is fast and near-optimal. As the vehicles move, uncertainties may arise which are constantly adapted to, and may even lead to either the cancellation of an overtaking procedure or the initiation of one. Higher level planning is performed by Dijkstra's algorithm which indicates the route to be followed by the vehicle in a road network. Re-planning is carried out when a road blockage or obstacle is detected. Experimental results confirm the success of the algorithm subject to optimal high and low-level planning, re-planning and overtaking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the origin and evolution of the Sun’s open magnetic flux are considered for single magnetic bipoles as they are transported across the Sun. The effects of magnetic flux transport on the radial field at the surface of the Sun are modeled numerically by developing earlier work by Wang, Sheeley, and Lean (2000). The paper considers how the initial tilt of the bipole axis (α) and its latitude of emergence affect the variation and magnitude of the surface and open magnetic flux. The amount of open magnetic flux is estimated by constructing potential coronal fields. It is found that the open flux may evolve independently from the surface field for certain ranges of the tilt angle. For a given tilt angle, the lower the latitude of emergence, the higher the magnitude of the surface and open flux at the end of the simulation. In addition, three types of behavior are found for the open flux depending on the initial tilt angle of the bipole axis. When the tilt is such that α ≥ 2◦ the open flux is independent of the surface flux and initially increases before decaying away. In contrast, for tilt angles in the range −16◦ < α < 2◦ the open flux follows the surface flux and continually decays. Finally, for α ≤ −16◦ the open flux first decays and then increases in magnitude towards a second maximum before decaying away. This behavior of the open flux can be explained in terms of two competing effects produced by differential rotation. Firstly, differential rotation may increase or decrease the open flux by rotating the centers of each polarity of the bipole at different rates when the axis has tilt. Secondly, it decreases the open flux by increasing the length of the polarity inversion line where flux cancellation occurs. The results suggest that, in order to reproduce a realistic model of the Sun’s open magnetic flux over a solar cycle, it is important to have accurate input data on the latitude of emergence of bipoles along with the variation of their tilt angles as the cycle progresses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observational analyses of running 5-year ocean heat content trends (Ht) and net downward top of atmosphere radiation (N) are significantly correlated (r~0.6) from 1960 to 1999, but a spike in Ht in the early 2000s is likely spurious since it is inconsistent with estimates of N from both satellite observations and climate model simulations. Variations in N between 1960 and 2000 were dominated by volcanic eruptions, and are well simulated by the ensemble mean of coupled models from the Fifth Coupled Model Intercomparison Project (CMIP5). We find an observation-based reduction in N of -0.31±0.21 Wm-2 between 1999 and 2005 that potentially contributed to the recent warming slowdown, but the relative roles of external forcing and internal variability remain unclear. While present-day anomalies of N in the CMIP5 ensemble mean and observations agree, this may be due to a cancellation of errors in outgoing longwave and absorbed solar radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In multiple-input multiple-output (MIMO) radar systems, the transmitters emit orthogonal waveforms to increase the spatial resolution. New frequency hopping (FH) codes based on chaotic sequences are proposed. The chaotic sequences have the characteristics of good encryption, anti-jamming properties and anti-intercept capabilities. The main idea of chaotic FH is based on queuing theory. According to the sensitivity to initial condition, these sequences can achieve good Hamming auto-correlation while also preserving good average correlation. Simulation results show that the proposed FH signals can achieve lower autocorrelation side lobe level and peak cross-correlation level with the increasing of iterations. Compared to the LFM signals, this sequence has higher range-doppler resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the V(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the (2)J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for (1)J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, U(15 N) Calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Delta sigma((15)N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current system of controlling oil spills involves a complex relationship of international, federal and state law, which has not proven to be very effective. The multiple layers of regulation often leave shipowners unsure of the laws facing them. Furthemore, nations have had difficulty enforcing these legal requirements. This thesis deals with the role marine insurance can play within the existing system of legislation to provide a strong preventative influence that is simple and cost-effective to enforce. In principle, insurance has two ways of enforcing higher safety standards and limiting the risk of an accident occurring. The first is through the use of insurance premiums that are based on the level of care taken by the insured. This means that a person engaging in riskier behavior faces a higher insurance premium, because their actions increase the probability of an accident occurring. The second method, available to the insurer, is collectively known as cancellation provisions or underwriting clauses. These are clauses written into an insurance contract that invalidates the agreement when certain conditions are not met by the insured The problem has been that obtaining information about the behavior of an insured party requires monitoring and that incurs a cost to the insurer. The application of these principles proves to be a more complicated matter. The modern marine insurance industry is a complicated system of multiple contracts, through different insurers, that covers the many facets of oil transportation. Their business practices have resulted in policy packages that cross the neat bounds of individual, specific insurance coverage. This paper shows that insurance can improve safety standards in three general areas -crew training, hull and equipment construction and maintenance, and routing schemes and exclusionary zones. With crew, hull and equipment, underwriting clauses can be used to ensure that minimum standards are met by the insured. Premiums can then be structured to reflect the additional care taken by the insured above and beyond these minimum standards. Routing schemes are traffic flow systems applied to congested waterways, such as the entrance to New York harbor. Using natural obstacles or manmade dividers, ships are separated into two lanes of opposing traffic, similar to a road. Exclusionary zones are marine areas designated off limits to tanker traffic either because of a sensitive ecosystem or because local knowledge is required of the region to ensure safe navigation. Underwriting clauses can be used to nullify an insurance contract when a tanker is not in compliance with established exclusionary zones or routing schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No presente trabalho descrevemos nossos resultados relativos à investigação da dinâmica de solvatação mecânica por meio de simulações por dinâmica molecular, respeitando o regime da resposta linear, em sistemas-modelo de argônio líquido com um soluto monoatômico ou diatômico dissolvido. Estudamos sistematicamente a influência dos parâmetros moleculares dos solutos (tamanho, polarizabilidade) e da densidade frente a vários modelos de solvatação. Funções de Correlação Temporal da Energia de Solvatação foram calculadas com relação à correlações de n-corpos (n = 2; 3) distinguindo interações repulsivas e atrativas para ambos os sistemas líquidos. Também obtivemos segundas derivadas temporais dessas funções referindo-se à parcelas translacionais, rotacionais e roto-translacionais na solução do diatômico. Encontramos que funções de correlação temporal coletivas podem ser razoavelmente bem aproximadas por correlações binárias a densidades baixas e, a densidades altas, correlações ternárias tornam-se mais importantes produzindo um descorrelacionamento mais rápido das funções coletivas devido a efeitos de cancelamento parciais. As funções de correlação para interações repulsivas e atrativas exibem comportamentos dinâmicos independentes do modelo de solvatação devido a fatores de escalonamento linear que afetam apenas as amplitudes das dessas funções de correlação temporal. Em geral, os sistemas com grau de liberdade rotacional apresentam tempos de correlação mais curtos para a dinâmica coletiva e tempos de correlação mais longos para as funções binárias e ternárias. Finalmente, esse estudo mostra que os sistemas contendo o diatômico relaxam-se predominantemente por mecanismos translacionais binários em modelos de solvatação envolvendo alterações apenas na polarizabilidade do soluto, e por mecanismos rotacionais atrativos binários em modelos envolvendo alterações no comprimento de ligação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of new digital services in the cellular networks, in transmission rates each time more raised, has stimulated recent research that comes studying ways to increase the data communication capacity and to reduce the delays in forward and reverse links of third generation WCDMA systems. These studies have resulted in new standards, known as 3.5G, published by 3GPP group, for the evolution of the third generation of the cellular systems. In this Masters Thesis the performance of a 3G WCDMA system, with diverse base stations and thousand of users is developed with assists of the planning tool NPSW. Moreover the performance of the 3.5G techniques hybrid automatic retransmission and multi-user detection with interference cancellation, candidates for enhance the WCDMA uplink capacity, is verified by means of computational simulations in Matlab of the increase of the data communication capacity and the reduction of the delays in the retransmission of packages of information

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are two main approaches for using in adaptive controllers. One is the so-called model reference adaptive control (MRAC), and the other is the so-called adaptive pole placement control (APPC). In MRAC, a reference model is chosen to generate the desired trajectory that the plant output has to follow, and it can require cancellation of the plant zeros. Due to its flexibility in choosing the controller design methodology (state feedback, compensator design, linear quadratic, etc.) and the adaptive law (least squares, gradient, etc.), the APPC is the most general type of adaptive control. Traditionally, it has been developed in an indirect approach and, as an advantage, it may be applied to non-minimum phase plants, because do not involve plant zero-pole cancellations. The integration to variable structure systems allows to aggregate fast transient and robustness to parametric uncertainties and disturbances, as well. In this work, a variable structure adaptive pole placement control (VS-APPC) is proposed. Therefore, new switching laws are proposed, instead of using the traditional integral adaptive laws. Additionally, simulation results for an unstable first order system and simulation and practical results for a three-phase induction motor are shown

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work discusses the application of techniques of ensembles in multimodal recognition systems development in revocable biometrics. Biometric systems are the future identification techniques and user access control and a proof of this is the constant increases of such systems in current society. However, there is still much advancement to be developed, mainly with regard to the accuracy, security and processing time of such systems. In the search for developing more efficient techniques, the multimodal systems and the use of revocable biometrics are promising, and can model many of the problems involved in traditional biometric recognition. A multimodal system is characterized by combining different techniques of biometric security and overcome many limitations, how: failures in the extraction or processing the dataset. Among the various possibilities to develop a multimodal system, the use of ensembles is a subject quite promising, motivated by performance and flexibility that they are demonstrating over the years, in its many applications. Givin emphasis in relation to safety, one of the biggest problems found is that the biometrics is permanently related with the user and the fact of cannot be changed if compromised. However, this problem has been solved by techniques known as revocable biometrics, which consists of applying a transformation on the biometric data in order to protect the unique characteristics, making its cancellation and replacement. In order to contribute to this important subject, this work compares the performance of individual classifiers methods, as well as the set of classifiers, in the context of the original data and the biometric space transformed by different functions. Another factor to be highlighted is the use of Genetic Algorithms (GA) in different parts of the systems, seeking to further maximize their eficiency. One of the motivations of this development is to evaluate the gain that maximized ensembles systems by different GA can bring to the data in the transformed space. Another relevant factor is to generate revocable systems even more eficient by combining two or more functions of transformations, demonstrating that is possible to extract information of a similar standard through applying different transformation functions. With all this, it is clear the importance of revocable biometrics, ensembles and GA in the development of more eficient biometric systems, something that is increasingly important in the present day