880 resultados para Iterative decoding
Resumo:
Abstract Ordnance Survey, our national mapping organisation, collects vast amounts of high-resolution aerial imagery covering the entirety of the country. Currently, photogrammetrists and surveyors use this to manually capture real-world objects and characteristics for a relatively small number of features. Arguably, the vast archive of imagery that we have obtained portraying the whole of Great Britain is highly underutilised and could be ‘mined’ for much more information. Over the last year the ImageLearn project has investigated the potential of "representation learning" to automatically extract relevant features from aerial imagery. Representation learning is a form of data-mining in which the feature-extractors are learned using machine-learning techniques, rather than being manually defined. At the beginning of the project we conjectured that representations learned could help with processes such as object detection and identification, change detection and social landscape regionalisation of Britain. This seminar will give an overview of the project and highlight some of our research results.
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Kumulative Habilitation, 2016
Resumo:
Creative ways of utilising renewable energy sources in electricity generation especially in remote areas and particularly in countries depending on imported energy, while increasing energy security and reducing cost of such isolated off-grid systems, is becoming an urgently needed necessity for the effective strategic planning of Energy Systems. The aim of this research project was to design and implement a new decision support framework for the optimal design of hybrid micro grids considering different types of different technologies, where the design objective is to minimize the total cost of the hybrid micro grid while at the same time satisfying the required electric demand. Results of a comprehensive literature review, of existing analytical, decision support tools and literature on HPS, has identified the gaps and the necessary conceptual parts of an analytical decision support framework. As a result this research proposes and reports an Iterative Analytical Design Framework (IADF) and its implementation for the optimal design of an Off-grid renewable energy based hybrid smart micro-grid (OGREH-SμG) with intra and inter-grid (μG2μG & μG2G) synchronization capabilities and a novel storage technique. The modelling design and simulations were based on simulations conducted using HOMER Energy and MatLab/SIMULINK, Energy Planning and Design software platforms. The design, experimental proof of concept, verification and simulation of a new storage concept incorporating Hydrogen Peroxide (H2O2) fuel cell is also reported. The implementation of the smart components consisting Raspberry Pi that is devised and programmed for the semi-smart energy management framework (a novel control strategy, including synchronization capabilities) of the OGREH-SμG are also detailed and reported. The hybrid μG was designed and implemented as a case study for the Bayir/Jordan area. This research has provided an alternative decision support tool to solve Renewable Energy Integration for the optimal number, type and size of components to configure the hybrid μG. In addition this research has formulated and reported a linear cost function to mathematically verify computer based simulations and fine tune the solutions in the iterative framework and concluded that such solutions converge to a correct optimal approximation when considering the properties of the problem. As a result of this investigation it has been demonstrated that, the implemented and reported OGREH-SμG design incorporates wind and sun powered generation complemented with batteries, two fuel cell units and a diesel generator is a unique approach to Utilizing indigenous renewable energy with a capability of being able to synchronize with other μ-grids is the most effective and optimal way of electrifying developing countries with fewer resources in a sustainable way, with minimum impact on the environment while also achieving reductions in GHG. The dissertation concludes with suggested extensions to this work in the future.
Resumo:
Machine learning is widely adopted to decode multi-variate neural time series, including electroencephalographic (EEG) and single-cell recordings. Recent solutions based on deep learning (DL) outperformed traditional decoders by automatically extracting relevant discriminative features from raw or minimally pre-processed signals. Convolutional Neural Networks (CNNs) have been successfully applied to EEG and are the most common DL-based EEG decoders in the state-of-the-art (SOA). However, the current research is affected by some limitations. SOA CNNs for EEG decoding usually exploit deep and heavy structures with the risk of overfitting small datasets, and architectures are often defined empirically. Furthermore, CNNs are mainly validated by designing within-subject decoders. Crucially, the automatically learned features mainly remain unexplored; conversely, interpreting these features may be of great value to use decoders also as analysis tools, highlighting neural signatures underlying the different decoded brain or behavioral states in a data-driven way. Lastly, SOA DL-based algorithms used to decode single-cell recordings rely on more complex, slower to train and less interpretable networks than CNNs, and the use of CNNs with these signals has not been investigated. This PhD research addresses the previous limitations, with reference to P300 and motor decoding from EEG, and motor decoding from single-neuron activity. CNNs were designed light, compact, and interpretable. Moreover, multiple training strategies were adopted, including transfer learning, which could reduce training times promoting the application of CNNs in practice. Furthermore, CNN-based EEG analyses were proposed to study neural features in the spatial, temporal and frequency domains, and proved to better highlight and enhance relevant neural features related to P300 and motor states than canonical EEG analyses. Remarkably, these analyses could be used, in perspective, to design novel EEG biomarkers for neurological or neurodevelopmental disorders. Lastly, CNNs were developed to decode single-neuron activity, providing a better compromise between performance and model complexity.
Resumo:
In the brain, mutations in SLC25A12 gene encoding AGC1 cause an ultra-rare genetic disease reported as a developmental and epileptic encephalopathy associated with global cerebral hypomyelination. Symptoms of the disease include diffused hypomyelination, arrested psychomotor development, severe hypotonia, seizures and are common to other neurological and developmental disorders. Amongst the biological components believed to be most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination. Recent studies (Poeta et al, 2022) have also shown how altered levels of transcription factors and epigenetic modifications greatly affect proliferation and differentiation in oligodendrocyte precursor cells (OPCs). In this study we explore the transcriptomic landscape of Agc1 in two different system models: OPCs silenced for Agc1 and iPSCs from human patients differentiated to neural progenitors. Analyses range from differential expression analysis, alternative splicing, master regulator analysis. ATAC-seq results on OPCs were integrated with results from RNA-Seq to assess the activity of a TF based on the accessibility data from its putative targets, which allows to integrate RNA-Seq data to infer their role as either activators or repressors. All the findings for this model were also integrated with early data from iPSCs RNA-seq results, looking for possible commonalities between the two different system models, among which we find a downregulation in genes encoding for SREBP, a transcription factor regulating fatty acids biosynthesis, a key process for myelination which could explain the hypomyelinated state of patients. We also find that in both systems cells tend to form more neurites, likely losing their ability to differentiate, considering their progenitor state. We also report several alterations in the chromatin state of cells lacking Agc1, which confirms the hypothesis for which Agc1 is not a disease restricted only to metabolic alterations in the cells, but there is a profound shift of the regulatory state of these cells.
Resumo:
In this thesis, the viability of the Dynamic Mode Decomposition (DMD) as a technique to analyze and model complex dynamic real-world systems is presented. This method derives, directly from data, computationally efficient reduced-order models (ROMs) which can replace too onerous or unavailable high-fidelity physics-based models. Optimizations and extensions to the standard implementation of the methodology are proposed, investigating diverse case studies related to the decoding of complex flow phenomena. The flexibility of this data-driven technique allows its application to high-fidelity fluid dynamics simulations, as well as time series of real systems observations. The resulting ROMs are tested against two tasks: (i) reduction of the storage requirements of high-fidelity simulations or observations; (ii) interpolation and extrapolation of missing data. The capabilities of DMD can also be exploited to alleviate the cost of onerous studies that require many simulations, such as uncertainty quantification analysis, especially when dealing with complex high-dimensional systems. In this context, a novel approach to address parameter variability issues when modeling systems with space and time-variant response is proposed. Specifically, DMD is merged with another model-reduction technique, namely the Polynomial Chaos Expansion, for uncertainty quantification purposes. Useful guidelines for DMD deployment result from the study, together with the demonstration of its potential to ease diagnosis and scenario analysis when complex flow processes are involved.
Resumo:
Negli ultimi quattro anni la summarization astrattiva è stata protagonista di una evoluzione senza precedenti dettata da nuovi language model neurali, architetture transformer-based, elevati spazi dimensionali, ampi dataset e innovativi task di pre-training. In questo contesto, le strategie di decoding convertono le distribuzioni di probabilità predette da un modello in un testo artificiale, il quale viene composto in modo auto regressivo. Nonostante il loro cruciale impatto sulla qualità dei riassunti inferiti, il ruolo delle strategie di decoding è frequentemente trascurato e sottovalutato. Di fronte all'elevato numero di tecniche e iperparametri, i ricercatori necessitano di operare scelte consapevoli per ottenere risultati più affini agli obiettivi di generazione. Questa tesi propone il primo studio altamente comprensivo sull'efficacia ed efficienza delle strategie di decoding in task di short, long e multi-document abstractive summarization. Diversamente dalle pubblicazioni disponibili in letteratura, la valutazione quantitativa comprende 5 metriche automatiche, analisi temporali e carbon footprint. I risultati ottenuti dimostrano come non vi sia una strategia di decoding dominante, ma come ciascuna possieda delle caratteristiche adatte a task e dataset specifici. I contributi proposti hanno l'obiettivo di neutralizzare il gap di conoscenza attuale e stimolare lo sviluppo di nuove tecniche di decoding.
Resumo:
O presente trabalho versa sobre o diagnóstico e a abordagem ortodôntica das anomalias dentárias, enfatizando os aspectos etiológicos que definem tais irregularidades de desenvolvimento. Parece existir uma inter-relação genética na determinação de algumas dessas anomalias, considerando-se a alta frequência de associações. Um mesmo defeito genético pode originar diferentes manifestações fenotípicas, incluindo agenesias, microdontias, ectopias e atraso no desenvolvimento dentário. As implicações clínicas das anomalias dentárias associadas são muito relevantes, uma vez que o diagnóstico precoce de uma determinada anomalia dentária pode alertar o clínico sobre a possibilidade de desenvolvimento de outras anomalias associadas no mesmo paciente ou em outros membros da família, permitindo a intervenção ortodôntica em época oportuna.
Resumo:
A síndrome do X Frágil é a causa mais frequente de deficiência intelectual hereditária. A variante de Dandy-Walker trata-se de uma constelação específica de achados neurorradiológicos. Este estudo relata achados da comunicação oral e escrita de um menino de 15 anos com diagnóstico clínico e molecular da síndrome do X-Frágil e achados de neuroimagem do encéfalo compatíveis com variante de Dandy-Walker. A avaliação fonoaudiológica foi realizada por meio da Observação do Comportamento Comunicativo, aplicação do ABFW - Teste de Linguagem Infantil - Fonologia, Perfil de Habilidades Fonológicas, Teste de Desempenho Escolar, Teste Illinois de Habilidades Psicolinguísticas, avaliação do sistema estomatognático e avaliação audiológica. Observou-se: alteração de linguagem oral quanto às habilidades fonológicas, semânticas, pragmáticas e morfossintáticas; déficits nas habilidades psicolinguísticas (recepção auditiva, expressão verbal, combinação de sons, memória sequencial auditiva e visual, closura auditiva, associação auditiva e visual); e alterações morfológicas e funcionais do sistema estomatognático. Na leitura verificou-se dificuldades na decodificação dos símbolos gráficos e na escrita havia omissões, aglutinações e representações múltiplas com o uso predominante de vogais e dificuldades na organização viso-espacial. Em matemática, apesar do reconhecimento numérico, não realizou operações aritméticas. Não foram observadas alterações na avaliação audiológica periférica. A constelação de sintomas comportamentais, cognitivos, linguísticos e perceptivos, previstos na síndrome do X-Frágil, somada às alterações estruturais do sistema nervoso central, pertencentes à variante de Dandy-Walker, trouxeram interferências marcantes no desenvolvimento das habilidades comunicativas, no aprendizado da leitura e escrita e na integração social do indivíduo.
Resumo:
This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.
Resumo:
The dengue virus has a single-stranded positive-sense RNA genome of similar to 10.700 nucleotides with a single open reading frame that encodes three structural (C, prM, and E) and seven nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins. It possesses four antigenically distinct serotypes (DENV 1-4). Many phylogenetic studies address particularities of the different serotypes using convenience samples that are not conducive to a spatio-temporal analysis in a single urban setting. We describe the pattern of spread of distinct lineages of DENV-3 circulating in Sao Jose do Rio Preto, Brazil, during 2006. Blood samples from patients presenting dengue-like symptoms were collected for DENV testing. We performed M-N-PCR using primers based on NS5 for virus detection and identification. The fragments were purified from PCR mixtures and sequenced. The positive dengue cases were geo-coded. To type the sequenced samples, 52 reference sequences were aligned. The dataset generated was used for iterative phylogenetic reconstruction with the maximum likelihood criterion. The best demographic model, the rate of growth, rate of evolutionary change, and Time to Most Recent Common Ancestor (TMRCA) were estimated. The basic reproductive rate during the epidemics was estimated. We obtained sequences from 82 patients among 174 blood samples. We were able to geo-code 46 sequences. The alignment generated a 399-nucleotide-long dataset with 134 taxa. The phylogenetic analysis indicated that all samples were of DENV-3 and related to strains circulating on the isle of Martinique in 2000-2001. Sixty DENV-3 from Sao Jose do Rio Preto formed a monophyletic group (lineage 1), closely related to the remaining 22 isolates (lineage 2). We assumed that these lineages appeared before 2006 in different occasions. By transforming the inferred exponential growth rates into the basic reproductive rate, we obtained values for lineage 1 of R(0) = 1.53 and values for lineage 2 of R(0) = 1.13. Under the exponential model, TMRCA of lineage 1 dated 1 year and lineage 2 dated 3.4 years before the last sampling. The possibility of inferring the spatio-temporal dynamics from genetic data has been generally little explored, and it may shed light on DENV circulation. The use of both geographic and temporally structured phylogenetic data provided a detailed view on the spread of at least two dengue viral strains in a populated urban area.
Resumo:
How information transmission processes between individuals are shaped by natural selection is a key question for the understanding of the evolution of acoustic communication systems. Environmental acoustics predict that signal structure will differ depending on general features of the habitat. Social features, like individual spacing and mating behavior, may also be important for the design of communication. Here we present the first experimental study investigating how a tropical rainforest bird, the white-browed warbler Basileuterus leucoblepharus, extracts various information from a received song: species-specific identity, individual identity and location of the sender. Species-specific information is encoded in a resistant acoustic feature and is thus a public signal helping males to reach a wide audience. Conversely, individual identity is supported by song features susceptible to propagation: this private signal is reserved for neighbors. Finally, the receivers can locate the singers by using propagation-induced song modifications. Thus, this communication system is well matched to the acoustic constraints of the rain forest and to the ecological requirements of the species. Our results emphasize that, in a constraining acoustic environment, the efficiency of a sound communication system results from a coding/decoding process particularly well tuned to the acoustic properties of this environment.
Resumo:
In this work an iterative strategy is developed to tackle the problem of coupling dimensionally-heterogeneous models in the context of fluid mechanics. The procedure proposed here makes use of a reinterpretation of the original problem as a nonlinear interface problem for which classical nonlinear solvers can be applied. Strong coupling of the partitions is achieved while dealing with different codes for each partition, each code in black-box mode. The main application for which this procedure is envisaged arises when modeling hydraulic networks in which complex and simple subsystems are treated using detailed and simplified models, correspondingly. The potentialities and the performance of the strategy are assessed through several examples involving transient flows and complex network configurations.
Resumo:
The solvent effects on the low-lying absorption spectrum and on the (15)N chemical shielding of pyrimidine in water are calculated using the combined and sequential Monte Carlo simulation and quantum mechanical calculations. Special attention is devoted to the solute polarization. This is included by an iterative procedure previously developed where the solute is electrostatically equilibrated with the solvent. In addition, we verify the simple yet unexplored alternative of combining the polarizable continuum model (PCM) and the hybrid QM/MM method. We use PCM to obtain the average solute polarization and include this in the MM part of the sequential QM/MM methodology, PCM-MM/QM. These procedures are compared and further used in the discrete and the explicit solvent models. The use of the PCM polarization implemented in the MM part seems to generate a very good description of the average solute polarization leading to very good results for the n-pi* excitation energy and the (15)N nuclear chemical shield of pyrimidine in aqueous environment. The best results obtained here using the solute pyrimidine surrounded by 28 explicit water molecules embedded in the electrostatic field of the remaining 472 molecules give the statistically converged values for the low lying n-pi* absorption transition in water of 36 900 +/- 100 (PCM polarization) and 36 950 +/- 100 cm(-1) (iterative polarization), in excellent agreement among one another and with the experimental value observed with a band maximum at 36 900 cm(-1). For the nuclear shielding (15)N the corresponding gas-water chemical shift obtained using the solute pyrimidine surrounded by 9 explicit water molecules embedded in the electrostatic field of the remaining 491 molecules give the statistically converged values of 24.4 +/- 0.8 and 28.5 +/- 0.8 ppm, compared with the inferred experimental value of 19 +/- 2 ppm. Considering the simplicity of the PCM over the iterative polarization this is an important aspect and the computational savings point to the possibility of dealing with larger solute molecules. This PCM-MM/QM approach reconciles the simplicity of the PCM model with the reliability of the combined QM/MM approaches.
Resumo:
This paper presents studies of cases in power systems by Sensitivity Analysis (SA) oriented by Optimal Power Flow (OPF) problems in different operation scenarios. The studies of cases start from a known optimal solution obtained by OPF. This optimal solution is called base case, and from this solution new operation points may be evaluated by SA when perturbations occur in the system. The SA is based on Fiacco`s Theorem and has the advantage of not be an iterative process. In order to show the good performance of the proposed technique tests were carried out on the IEEE 14, 118 and 300 buses systems. (C) 2010 Elsevier Ltd. All rights reserved.