310 resultados para Intrusions
Resumo:
The long-term record of glacial/interglacial cycles indicates three major paleoceanographic regimes in the Norwegian Sea. The period since the first major glaciation over Scandinavia at 2.56 Ma is characterized by high-frequency, low-amplitude oscillations of ice-rafted debris inputs, a lowered salinity, and decreased carbonate shell production in surface waters as well as overall strong carbonate dissolution at the sea floor. These conditions indicate a more zonal circulation pattern in the Northern Hemisphere and a relative isolation of surface and bottom waters in the Norwegian Sea. The generally temperate glacial climate was only interrupted by episodic weak intrusions of warm Atlantic waters. These intrusions have been detected in considerable magnitude only at Site 644, and thus are restricted to areas much closer to the Norwegian shelf than during earlier periods. The interval from 1.2 to 0.6 Ma is characterized by an increase in carbonate shell production and a better preservation, as well as a change in frequency patterns of ice-rafted debris inputs. This pattern reflects increasing meridionality in circulation-strengthening contrasts in the Norwegian Sea between strong glaciations and warm interglacials. The past 0.6 Ma reveal high-amplitude oscillations in carbonate records that are dominated by the 100-k.y. frequency pattern. Glacial/interglacial sedimentary cycles in the ODP Leg 104 drill sites reveal a variety of specific dark lithofacies. These dark diamictons reflect intense iceberg rafting in surface waters fed by surges along the front of marine-based parts of the continental ice sheets in the southeastern sector of the Norwegian Sea and are associated with resuspension of reworked fossil organic carbon and strong dissolution at the sea floor. Piling up of huge iceberg barriers along the Iceland-Faeroe-Scotland Ridge might have partially blocked off surface water connections with the North Atlantic during these periods
Resumo:
Whole rock sulfur and oxygen isotope compositions of altered peridotites and gabbros from near the 15°20'N Fracture Zone on the Mid-Atlantic Ridge were analyzed to investigate hydrothermal alteration processes and test for a subsurface biosphere in oceanic basement. Three processes are identified. (1) High-temperature hydrothermal alteration (~250-350°C) at Sites 1268 and 1271 is characterized by 18O depletion (2.6-4.4 per mil), elevated sulfide-S, and high delta34S (up to ~2 wt% and 4.4-10.8 per mil). Fluids were derived from high-temperature (>350°C) reaction of seawater with gabbro at depth. These cores contain gabbroic rocks, suggesting that associated heat may influence serpentinization. (2) Low-temperature (<150°C) serpentinization at Sites 1272 and 1274 is characterized by elevated delta18O (up to 8.1 per mil), high sulfide-S (up to ~3000 ppm), and negative delta34S (to -32.1 per mil) that reflect microbial reduction of seawater sulfate. These holes penetrate faults at depth, suggesting links between faulting and temperatures of serpentinization. (3) Late low-temperature oxidation of sulfide minerals caused loss of sulfur from rocks close to the seafloor. Sulfate at all sites contains a component of oxidized sulfide minerals. Low delta34S of sulfate may result from kinetic isotope fractionation during oxidation or may indicate readily oxidized low-delta34S sulfide derived from microbial sulfate reduction. Results show that peridotite alteration may be commonly affected by fluids +/- heat derived from mafic intrusions and that microbial sulfate reduction is widespread in mantle exposed at the seafloor.
Resumo:
Potassium permanganate oxidative degradations were conducted for kerogens isolated from Cretaceous black shales (DSDP Leg 41, Site 368), thermally altered during the Miocene by diabase intrusions and from unaltered samples heated under laboratory conditions (250-500°C). Degradation products of less altered kerogens are dominated by normal C4-C15 alpha,omega-dicarboxylic acids, with lesser amounts of n-C16 and n-C18 monocarboxylic acids, and benzene mono-to-tetracarboxylic acids. On the other hand, thermally altered kerogens show benzene di-to-tetracarboxylic acids as dominant degradation products, with lesser or no amounts (variable depending on the degree of thermal alteration) of alpha,omega-dicarboxylic acids. Essentially no differences between the oxidative degradation products of naturally- and artificially-altered kerogens are observed. As a result of this study, five indices of aromatization (total aromatic acids/kerogen; apparent aromaticity; benzenetetracarboxylic acids/total aromatic acids; benzene-1,2-dicarboxylic acid/benzenedicarboxylic acids; benzene-1,2,3-tricarboxylic acid/benzenetricarboxylic acids) and two indices of aliphatic character (Total aliphatic acids/kerogen; Aliphaticity) are proposed to characterize the degree of thermal alteration of kerogens. Furthermore, a good correlation is observed between apparent aromaticity estimated by the present KMnO4 oxidation method and that from the 13C NMR method (Dennis et al., 1982; doi:10.1016/0016-7037(82)90046-1).
Resumo:
New 40Ar/39Ar ages for alunite from the Moore and Monte Negro deposits in the Pueblo Viejo district, as well as from a newly discovered alunite-bearing zone on Loma la Cuaba west of the known deposits, are reported here. The ages range from about 80 to 40 Ma, with closely adjacent samples exhibiting very different ages. Interpretation of these results in the context of estimated closure temperatures for alunite and the geologic and tectonic evolution of Hispaniola does not lead to a simple conclusion about the age of mineralization. The simplest interpretation, that mineralization was caused by a buried Late Cretaceous (~80 Ma) intrusion, is complicated by lack of intrusions of this age in the area and absence of alteration in overlying limestone. The alternative interpretation, that mineralization was formed during Early Cretaceous (~110 Ma) magmatism and that the 40Ar/39Ar ages were completely reset by Late Cretaceous thrusting, is complicated by a lack of information on the timing and thermal effects of thrusting in central Hispaniola. Alunite studies have yielded similar unclear results in other pre-Cenozoic ore systems, notably those of the Lachlan fold belt in Australia
Consolidation of a wsn and minimax method to rapidly neutralise intruders in strategic installations
Resumo:
Due to the sensitive international situation caused by still-recent terrorist attacks, there is a common need to protect the safety of large spaces such as government buildings, airports and power stations. To address this problem, developments in several research fields, such as video and cognitive audio, decision support systems, human interface, computer architecture, communications networks and communications security, should be integrated with the goal of achieving advanced security systems capable of checking all of the specified requirements and spanning the gap that presently exists in the current market. This paper describes the implementation of a decision system for crisis management in infrastructural building security. Specifically, it describes the implementation of a decision system in the management of building intrusions. The positions of the unidentified persons are reported with the help of a Wireless Sensor Network (WSN). The goal is to achieve an intelligent system capable of making the best decision in real time in order to quickly neutralise one or more intruders who threaten strategic installations. It is assumed that the intruders’ behaviour is inferred through sequences of sensors’ activations and their fusion. This article presents a general approach to selecting the optimum operation from the available neutralisation strategies based on a Minimax algorithm. The distances among different scenario elements will be used to measure the risk of the scene, so a path planning technique will be integrated in order to attain a good performance. Different actions to be executed over the elements of the scene such as moving a guard, blocking a door or turning on an alarm will be used to neutralise the crisis. This set of actions executed to stop the crisis is known as the neutralisation strategy. Finally, the system has been tested in simulations of real situations, and the results have been evaluated according to the final state of the intruders. In 86.5% of the cases, the system achieved the capture of the intruders, and in 59.25% of the cases, they were intercepted before they reached their objective.
Resumo:
La seguridad en redes informáticas es un área que ha sido ampliamente estudiada y objeto de una extensa investigación en los últimos años. Debido al continuo incremento en la complejidad y sofisticación de los ataques informáticos, el aumento de su velocidad de difusión, y la lentitud de reacción frente a las intrusiones existente en la actualidad, se hace patente la necesidad de mecanismos de detección y respuesta a intrusiones, que detecten y además sean capaces de bloquear el ataque, y mitiguen su impacto en la medida de lo posible. Los Sistemas de Detección de Intrusiones o IDSs son tecnologías bastante maduras cuyo objetivo es detectar cualquier comportamiento malicioso que ocurra en las redes. Estos sistemas han evolucionado rápidamente en los últimos años convirtiéndose en herramientas muy maduras basadas en diferentes paradigmas, que mejoran su capacidad de detección y le otorgan un alto nivel de fiabilidad. Por otra parte, un Sistema de Respuesta a Intrusiones (IRS) es un componente de seguridad que puede estar presente en la arquitectura de una red informática, capaz de reaccionar frente a los incidentes detectados por un Sistema de Detección de Intrusiones (IDS). Por desgracia, esta tecnología no ha evolucionado al mismo ritmo que los IDSs, y la reacción contra los ataques detectados es lenta y básica, y los sistemas presentan problemas para ejecutar respuestas de forma automática. Esta tesis doctoral trata de hacer frente al problema existente en la reacción automática frente a intrusiones, mediante el uso de ontologías, lenguajes formales de especificación de comportamiento y razonadores semánticos como base de la arquitectura del sistema de un sistema de respuesta automática frente a intrusiones o AIRS. El objetivo de la aproximación es aprovechar las ventajas de las ontologías en entornos heterogéneos, además de su capacidad para especificar comportamiento sobre los objetos que representan los elementos del dominio modelado. Esta capacidad para especificar comportamiento será de gran utilidad para que el AIRS infiera la respuesta óptima frente a una intrusión en el menor tiempo posible. Abstract Security in networks is an area that has been widely studied and has been the focus of extensive research over the past few years. The number of security events is increasing, and they are each time more sophisticated, and quickly spread, and slow reaction against intrusions, there is a need for intrusion detection and response systems to dynamically adapt so as to better detect and respond to attacks in order to mitigate them or reduce their impact. Intrusion Detection Systems (IDSs) are mature technologies whose aim is detecting malicious behavior in the networks. These systems have quickly evolved and there are now very mature tools based on different paradigms (statistic anomaly-based, signature-based and hybrids) with a high level of reliability. On the other hand, Intrusion Response System (IRS) is a security technology able to react against the intrusions detected by IDS. Unfortunately, the state of the art in IRSs is not as mature as with IDSs. The reaction against intrusions is slow and simple, and these systems have difficulty detecting intrusions in real time and triggering automated responses. This dissertation is to address the existing problem in automated reactions against intrusions using ontologies, formal behaviour languages and semantic reasoners as the basis of the architecture of an automated intrusion response systems or AIRS. The aim is to take advantage of ontologies in heterogeneous environments, in addition to its ability to specify behavior of objects representing the elements of the modeling domain. This ability to specify behavior will be useful for the AIRS in the inference process of the optimum response against an intrusion, as quickly as possible.