940 resultados para International Plant Names Index
Resumo:
Soil compaction can be minimized either mechanically or biologically, using plant species with vigorous root systems. An experiment was carried out with soybean (Glycine max) in rotation with triticale (X Triticosecale) and sunflower (Helianthus annuus) in fall-winter associated with pearl millet (Pennisetum glaucum), grain sorghum (Sorghum bicolor) or sunn hemp (Crotalaria juncea) in spring. Crop rotation under no-till was compared with mechanical chiseling. The experiment was carried out in Botucatu, São Paulo State, Brazil. Soil quality was estimated using the S index and soil water retention curves (in the layers of 0-0.05, 0.075-0.125, 0.15-0.20, 0.275-0.325, and 0.475-0.525 m deep). Crop rotation and chiseling improved soil quality, increasing the S index to over 0.035 to a depth of 20 cm in the soil profile. The improved soil quality, as shown by the S index, makes the use of mechanical chiseling unnecessary, since after 3 years the soil physical quality under no-tilled crop rotation and chiseling was similar.
Resumo:
BACKGROUND & AIMS: Standardized instruments are needed to assess the activity of eosinophilic esophagitis (EoE) and to provide end points for clinical trials and observational studies. We aimed to develop and validate a patient-reported outcome (PRO) instrument and score, based on items that could account for variations in patient assessments of disease severity. We also evaluated relationships between patient assessment of disease severity and EoE-associated endoscopic, histologic, and laboratory findings. METHODS: We collected information from 186 patients with EoE in Switzerland and the United States (69.4% male; median age, 43 y) via surveys (n = 135), focus groups (n = 27), and semistructured interviews (n = 24). Items were generated for the instruments to assess biologic activity based on physician input. Linear regression was used to quantify the extent to which variations in patient-reported disease characteristics could account for variations in patient assessment of EoE severity. The PRO instrument was used prospectively in 153 adult patients with EoE (72.5% male; median age, 38 y), and validated in an independent group of 120 patients with EoE (60.8% male; median age, 40.5 y). RESULTS: Seven PRO factors that are used to assess characteristics of dysphagia, behavioral adaptations to living with dysphagia, and pain while swallowing accounted for 67% of the variation in patient assessment of disease severity. Based on statistical consideration and patient input, a 7-day recall period was selected. Highly active EoE, based on endoscopic and histologic findings, was associated with an increase in patient-assessed disease severity. In the validation study, the mean difference between patient assessment of EoE severity (range, 0-10) and PRO score (range, 0-8.52) was 0.15. CONCLUSIONS: We developed and validated an EoE scoring system based on 7 PRO items that assess symptoms over a 7-day recall period. Clinicaltrials.gov number: NCT00939263.
Resumo:
Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps. Methods Using the quadratic diversity measure based on six functional traits: specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), leaf carbon content (C), leaf nitrogen content (N), and leaf carbon to nitrogen content (C/N) alongside a species-resolved phylogenetic tree, we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps. Important findings Our study highlights two main points. First, climate and land use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land use factors in plant functional and phylogenetic community turnover, and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.
Resumo:
Sugarcane is considered a Si-accumulating plant, but in Brazil, where several soil types are used for cultivation, there is little information about silicon (Si) fertilization. The objectives of this study were to evaluate the silicon availability, uptake and recovery index of Si from the applied silicate on tropical soils with and without silicate fertilization, in three crops. The experiments in pots (100 L) were performed with specific Si rates (0, 185, 370 and 555 kg ha-1 Si), three soils (Quartzipsamment-Q, 6 % clay; Rhodic Hapludox-RH, 22 % clay; and Rhodic Acrudox-RA, 68 % clay), with four replications. The silicon source was Ca-Mg silicate. The same Ca and Mg quantities were applied to all pots, with lime and/or MgCl2, when necessary. Sugarcane was harvested in the plant cane and first- and second-ratoon crops. The silicon rates increased soil Si availability and Si uptake by sugarcane and had a strong residual effect. The contents of soluble Si were reduced by harvesting and increased with silicate application in the following decreasing order: Q>RH>RA. The silicate rates promoted an increase in soluble Si-acetic acid at harvest for all crops and in all soils, except RA. The amounts of Si-CaCl2 were not influenced by silicate in the ratoon crops. The plant Si uptake increased according to the Si rates and was highest in RA at all harvests. The recovery index of applied Si (RI) of sugarcane increased over time, and was highest in RA.
Resumo:
Variable-rate nitrogen fertilization (VRF) based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE) and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF) used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N) content, N uptake, relative chlorophyll content (SPAD) reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001), total N uptake (R² = 0.87; p<0.0001) and SPAD reading (R² = 0.63; p<0.0001) and inversely related to plant N content (R² = 0.53; p<0.0001). The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.
Resumo:
Many soils have a hard-setting behavior, also known as cohesive or "coesos". In such soils, the penetration resistance increases markedly when dry and decreases considerably when moist, creating serious limitations for plant emergence and growth. To evaluate the level of structure degradation in hard-setting soils with different texture classes and to create an index for assessing soil hardness levels in hard-setting soils, six soil representative profiles were selected in the field in various regions of Brazil. The following indices were tested: S, which measures soil physical quality, and H , which analyzes the degree of hardness and the effective stress in the soil during drying. Both indices were calculated using previously described functions based on data from the water-retention curves for the soils. The hard-setting values identified in different soils of the Brazilian Coastal Tablelands have distinct compaction (hardness) levels and can be satisfactorily measured by the H index. The S index was adequate for evaluating the structural characteristics of the hard-setting soils, classifying them as suitable or poor for cultivation, but only when the moisture level of the soil was near the inflection point. The H index showed that increases in density in hard-setting soils result from increases in effective stress and not from the soil texture. Values for Bd > 1.48 kg dm-3 classify the soil as hard-setting, and the structural organization is considered "poor".
Resumo:
Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols). In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT), conventional tillage (CT), and minimum tillage (MT) with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb) and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.). Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.
Resumo:
In order to explore potential alternatives to the production of polyhydroxyalkanoates (PHAs) in bacteria, the enzymes of Alcaligenes eutrophus involved in the synthesis of polyhydroxybutyrate (PHB) have been expressed in the model plant Arabidopsis thaliana. Following the successful production of low amounts of high molecular weight PHB in plants expressing the acetoacetyl-CoA reductase and the PHB synthase in the cytoplasm of Arabidopsis cell, expression of the PHB pathway in the pastids was achieved by modifying the PHB enzymes with plastid targeting signals. This strategy resulted in a significant increase in the formation of PHB in Arabidopsis, with a maximum of 14% of the leaf dry weight . The increase in PHB production is most likely due to the higher flux in the plastids of acetyl-CoA, the precursor for PHB synthesis. A detailed study of metabolic fluxes in Arabidopsis plants producing high levels of PHB could help to determine the potential problems and limitations of PHB synthesis in Arabidopsis and could be useful for optimising strategies for the production of PHB in crop plants. The knowledge on PHB production could also be used for the production of PHAs other than PHB. Apart from PHB, no other PHAs have been produced in an eukaryotic system. Arabidopsis will therefore be used as a model system for the production in eukaryotes of more complex PHAs, such as poly(hydroxybutyrate-co-hydroxyvylerate) or medium-chain-lenght-PHAs.
Resumo:
The objective of this analysis was to assess the radiation exposure associated with (90)Y-ibritumomab tiuxetan when used as consolidation therapy in adults with low or minimal tumor burden after first-line therapy of advanced follicular lymphoma (FL). METHODS: The patients who were enrolled in the phase 3 first-line indolent trial were 18 y or older, with CD20(+) grade 1 or 2 stage III or IV FL, and a partial response, complete response, or unconfirmed complete response to first-line chemotherapy. The patients were allocated randomly to receive a single infusion of unlabeled rituximab 250 mg/m(2) on day -7 and consolidation on day 0 with a single dose of (90)Y-ibritumomab tiuxetan, 14.8 MBq/kg, immediately after unlabeled rituximab, 250 mg/m(2), or no further treatment. On day -7, a subset of patients received an injection of 185 MBq of (111)In-ibritumomab tiuxetan immediately after unlabeled rituximab, 250 mg/m(2), for central dosimetry analysis. Correlations were assessed between organ radiation absorbed dose and toxicity, body weight, body mass index, and progression-free survival. RESULTS: Central dosimetry evaluations were available from 57 of 70 patients. Median radiation absorbed doses were 100 cGy (range, 28-327 cGy) for the red marrow and 72 cGy (range, 46-106 cGy) for the whole body. Radiation absorbed doses did not differ significantly between patients who had a partial response or complete response to initial therapy. Progression-free survival correlated significantly with the whole-body (r = 0.4401; P = 0.0006) and bone marrow (r = 0.2976; P = 0.0246) radiation dose. Body weight was significantly negatively correlated with whole-body radiation dose (r = -0.4971; P < 0.0001). Neither the whole-body radiation dose nor the bone marrow radiation dose correlated with hematologic toxicity. CONCLUSION: In patients with low or minimal residual tumor burden after first-line chemotherapy of advanced FL, whole-body and bone marrow exposure after (90)Y-ibritumomab tiuxetan consolidation showed a significant positive correlation with progression-free survival, whereas dosimetric data could not predict hematologic toxicity.
Resumo:
Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data.
Resumo:
Aim: Climatic niche modelling of species and community distributions implicitly assumes strong and constant climatic determinism across geographic space. This assumption had however never been tested so far. We tested it by assessing how stacked-species distribution models (S-SDMs) perform for predicting plant species assemblages along elevation. Location: Western Swiss Alps. Methods: Using robust presence-absence data, we first assessed the ability of topo-climatic S-SDMs to predict plant assemblages in a study area encompassing a 2800 m wide elevation gradient. We then assessed the relationships among several evaluation metrics and trait-based tests of community assembly rules. Results: The standard errors of individual SDMs decreased significantly towards higher elevations. Overall, the S-SDM overpredicted far more than they underpredicted richness and could not reproduce the humpback curve along elevation. Overprediction was greater at low and mid-range elevations in absolute values but greater at high elevations when standardised by the actual richness. Looking at species composition, the evaluation metrics accounting for both the presence and absence of species (overall prediction success and kappa) or focusing on correctly predicted absences (specificity) increased with increasing elevation, while the metrics focusing on correctly predicted presences (Jaccard index and sensitivity) decreased. The best overall evaluation - as driven by specificity - occurred at high elevation where species assemblages were shown to be under significant environmental filtering of small plants. In contrast, the decreased overall accuracy in the lowlands was associated with functional patterns representing any type of assembly rule (environmental filtering, limiting similarity or null assembly). Main Conclusions: Our study reveals interesting patterns of change in S-SDM errors with changes in assembly rules along elevation. Yet, significant levels of assemblage prediction errors occurred throughout the gradient, calling for further improvement of SDMs, e.g., by adding key environmental filters that act at fine scales and developing approaches to account for variations in the influence of predictors along environmental gradients.
Resumo:
BACKGROUND: The efficacy of cardiac pacing for prevention of syncopal recurrences in patients with neurally mediated syncope is controversial. We wanted to determine whether pacing therapy reduces syncopal recurrences in patients with severe asystolic neurally mediated syncope. METHODS AND RESULTS: Double-blind, randomized placebo-controlled study conducted in 29 centers in the Third International Study on Syncope of Uncertain Etiology (ISSUE-3) trial. Patients were ≥40 years, had experienced ≥3 syncopal episodes in the previous 2 years. Initially, 511 patients, received an implantable loop recorder; 89 of these had documentation of syncope with ≥3 s asystole or ≥6 s asystole without syncope within 12 ± 10 months and met criteria for pacemaker implantation; 77 of 89 patients were randomly assigned to dual-chamber pacing with rate drop response or to sensing only. The data were analyzed on intention-to-treat principle. There was syncope recurrence during follow-up in 27 patients, 19 of whom had been assigned to pacemaker OFF and 8 to pacemaker ON. The 2-year estimated syncope recurrence rate was 57% (95% CI, 40-74) with pacemaker OFF and 25% (95% CI, 13-45) with pacemaker ON (log rank: P=0.039 at the threshold of statistical significance of 0.04). The risk of recurrence was reduced by 57% (95% CI, 4-81). Five patients had procedural complications: lead dislodgment in 4 requiring correction and subclavian vein thrombosis in 1 patient. CONCLUSIONS: Dual-chamber permanent pacing is effective in reducing recurrence of syncope in patients ≥40 years with severe asystolic neurally mediated syncope. The observed 32% absolute and 57% relative reduction in syncope recurrence support this invasive treatment for the relatively benign neurally mediated syncope. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00359203.
Resumo:
El manejo de los índices de impacto de las revistas internacionales es capital para investigadores, profesores y estudiantes de tercer ciclo ya que permite seleccionar la publicación más adecuada para dirigir las investigaciones. Al margen, en la actualidad, las trayectorias curriculares se están midiendo a través de las publicaciones en revistas indexadas, por lo que el conocimiento de estos índices es fundamental. En el presente trabajo se reflejan las revistas de geografía física que han aparecido en las categorías de Geografía del Science Citation Index del Journal Citation Reports desde 1989 hasta 2004. Se realiza una visión global de cada revista con los valores de factor de impacto y la editorial que las publica, así como una revisión de la temática de cada una de ellas y el perfil de su audiencia potencial
Resumo:
This paper analyses the international inequalities in CO2 emissions intensity for the period 1971–2009 and assesses explanatory factors. Multiplicative, group and additive methodologies of inequality decomposition are employed. The first allows us to clarify the separated role of the carbonisation index and the energy intensity in the pattern observed for inequalities in CO2 intensities; the second allows us to understand the role of regional groups; and the third allows us to investigate the role of different fossil energy sources (coal, oil and gas). The results show that, first, the reduction in global emissions intensity has coincided with a significant reduction in international inequality. Second, the bulk of this inequality and its reduction are attributed to differences between the groups of countries considered. Third, coal is the main energy source explaining these inequalities, although the growth in the relative contribution of gas is also remarkable. Fourth, the bulk of inequalities between countries and its decline are explained by differences in energy intensities, although there are significant differences in the patterns demonstrated by different groups of countries. JEL codes: D39; Q43; Q56. Key words: CO2 international distribution, inequality decomposition, CO2 emissions intensity
Resumo:
OBJECTIVES: The objective of this study was to compare costs data by diagnosis related group (DRG) between Belgium and Switzerland. Our hypotheses were that differences between countries can probably be explained by methodological differences in cost calculations, by differences in medical practices and by differences in cost structures within the two countries. METHODS: Classifications of DRG used in the two countries differ (AP-DRGs version 1.7 in Switzerland and APR-DRGs version 15.0 in Belgium). The first step of this study was to transform Belgian summaries into Swiss AP-DRGs. Belgian and Swiss data were calculated with a clinical costing methodology (full costing). Belgian and Swiss costs were converted into US$ PPP (purchasing power parity) in order to neutralize differences in purchasing power between countries. RESULTS: The results of this study showed higher costs in Switzerland despite standardization of cost data according to PPP. The difference is not explained by the case-mix index because this was similar for inliers between the two countries. The length of stay (LOS) was also quite similar for inliers between the two countries. The case-mix index was, however, higher for high outliers in Belgium, as reflected in a higher LOS for these patients. Higher costs in Switzerland are thus probably explained mainly by the higher number of agency staff by service in this country or because of differences in medical practices. CONCLUSIONS: It is possible to make international comparisons but only if there is standardization of the case-mix between countries and only if comparable accountancy methodologies are used. Harmonization of DRGs groups, nomenclature and accountancy is thus required.