989 resultados para Instrumented buoy
Resumo:
Earthquakes are associated with negative events, such as large number of casualties, destruction of buildings and infrastructures, or emergence of tsunamis. In this paper, we apply the Multidimensional Scaling (MDS) analysis to earthquake data. MDS is a set of techniques that produce spatial or geometric representations of complex objects, such that, objects perceived to be similar/distinct in some sense are placed nearby/distant on the MDS maps. The interpretation of the charts is based on the resulting clusters since MDS produces a different locus for each similarity measure. In this study, over three million seismic occurrences, covering the period from January 1, 1904 up to March 14, 2012 are analyzed. The events, characterized by their magnitude and spatiotemporal distributions, are divided into groups, either according to the Flinn–Engdahl seismic regions of Earth or using a rectangular grid based in latitude and longitude coordinates. Space-time and Space-frequency correlation indices are proposed to quantify the similarities among events. MDS has the advantage of avoiding sensitivity to the non-uniform spatial distribution of seismic data, resulting from poorly instrumented areas, and is well suited for accessing dynamics of complex systems. MDS maps are proven as an intuitive and useful visual representation of the complex relationships that are present among seismic events, which may not be perceived on traditional geographic maps. Therefore, MDS constitutes a valid alternative to classic visualization tools, for understanding the global behavior of earthquakes.
Resumo:
No presente trabalho descreve-se o estudo realizado no Instituto Superior de Engenharia do Porto (ISEP) com o objetivo de comprovar a viabilidade da utilização de pneus em fim de vida em estruturas de solo reforçado. As estruturas de suporte de terras materializadas com pneus preenchidos com solo são usadas em alguns países, sobretudo em estruturas do tipo gravidade. Investiga-se neste trabalho o seu desempenho em estruturas de solo reforçado. Com a finalidade de prever o comportamento da construção, foi utilizado um software desenvolvido pela empresa Canadiana Rocscience, denominado Phase2. Com este software foi possível fazer uma análise paramétrica da secção transversal do modelo, avaliando os esforços e os deslocamentos que se desenvolvem no interior da estrutura, através da utilização do Método dos Elementos Finitos. Foi efetuada uma campanha de ensaios laboratoriais, realizados com amostras de solo retiradas do local de construção do protótipo, com o intuito de caracterizar os parâmetros do solo A definição destes parâmetros tem como objetivo tornar a simulação o mais fidedigna possível. Estruturas de Suporte de Terras Executadas Com Pneus. Estudo Paramétrico e Conceção de Protótipo Como validação da modelação realizada no programa Phase2, o protótipo será devidamente instrumentado com equipamentos de monitorização; a informação recolhida receberá um tratamento posterior e permitirá a calibração do modelo numérico. No presente trabalho define-se o plano de monitorização a instalar no protótipo.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
Due to the fact that different injection molding conditions tailor the mechanical response of the thermoplastic material, such effect must be considered earlier in the product development process. The existing approaches implemented in different commercial software solutions are very limited in their capabilities to estimate the influence of processing conditions on the mechanical properties. Thus, the accuracy of predictive simulations could be improved. In this study, we demonstrate how to establish straightforward processing-impact property relationships of talc-filled injection-molded polypropylene disc-shaped parts by assessing the thermomechanical environment (TME). To investigate the relationship between impact properties and the key operative variables (flow rate, melt and mold temperature, and holding pressure), the design of experiments approach was applied to systematically vary the TME of molded samples. The TME is characterized on computer flow simulation outputsanddefined bytwo thermomechanical indices (TMI): the cooling index (CI; associated to the core features) and the thermo-stress index (TSI; related to the skin features). The TMI methodology coupled to an integrated simulation program has been developed as a tool to predict the impact response. The dynamic impact properties (peak force, peak energy, and puncture energy) were evaluated using instrumented falling weight impact tests and were all found to be similarly affected by the imposed TME. The most important molding parameters affecting the impact properties were found to be the processing temperatures (melt andmold). CI revealed greater importance for the impact response than TSI. The developed integrative tool provided truthful predictions for the envisaged impact properties.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
Los suelos estabilizados mediante compactación, permiten obtener materiales con ventajas ténicas y economicas en diferentes tipos de obras de ingeniería. Ejemplos de su uso se tiene en bases viales de autopistas, rutas o calles urbanas, pistas de aterrizaje, barreras de contención para enterramientos sanitarios o lagunas de estabilización, apoyos de plateas para fundación de edificios, losas industriales, entre otras aplicaciones. Las fallas en este tipo de construcciones pueden resultar en catástrofes ambientales, sociales y elevadas pérdidas económicas, por lo que resulta de gran importancia optimizar el diseño e incrementar la seguridad de este tipo de construcciones. Las obras con estas características involucran grandes volúmenes y/o superficies que requieren controles sistemáticos durante su desarrollo, a los fines de garantizar el cumplimiento de las propiedades de los materiales establecidos en la etapa de diseño. De esta forma, es necesario contar con ensayos de campo sencillos, confiables y eficientes que permitan identificar propiedades físicas, mecánicas e hidráulicas. Las geoestructuras generadas mediante la compactación del suelo próximo al sector de construcción pueden funcionar adecuadamente, con reducidos costos de material y transporte. Su estabilización puede ejecutarse en forma natural, o con la incorporación de agregados minerales como bentonita, cal o cemento. Estas incorporaciones mejoran las propiedades hidráulicas y mecánicas del material, optimizando el comportamiento requerido para la obra. Para establecer la forma en la que estos minerales modifican el comportamiento del suelo local compactado deben realizarse investigaciones especiales con los materiales involucrados. En el ámbito internacional existen numerosas investigaciones sobre comportamiento de suelos compactados, no obstante, si bien aportan antecedentes para la planificación de estudios locales, sus resultados no pueden trasladarse de manera directa. Las características propias del suelo local constituye la principal variable debido a la diversidad en las propiedades geotécnicas de cada Región. Esta investigación, se focaliza en el empleo de suelos limosos de la formación loéssica de la zona central de Argentina. Los suelos de la llanura cordobesa poseen comportamientos particulares, los cuales son contemplados en los diseños presentados como resutado de las investigaciones internacionales. Esta particularidad se relaciona con su inestabilidad, lo que los clasifica como suelos colapsables. Los resultados obtenidos en este trabajo podrán ser extendidos a una gran superficie de la Provincia de Córdoba y a la Región Pampeana en general, a los fines de establecer recomendaciones de diseño y construcción para la confección de Pliegos de Especificaciones Técnicas de diferentes tipos de obras públicas y privadas. El estudio contempla la ejecución de un plan experimental a escala de laboratorio y campo. Los materiales corresponden a suelo limosos puros, y diferentes agregados tales como bentonita, cal y cemento. Se planifican ensayos para evaluar el desempeño del material, a partir de la confección de muestras preparadas con diferentes condiciones de compactación (energía, humedad y método), y en forma de mezcla con los distintos tipos de agregados. Se realizarán ensayos de permeabilidad en celdas de pared rígida y flexible, junto a ensayos mecánicos de compresión confinada, simple y triaxial. Para el trabajo experimental de campo se prevé la ejecución de terraplenes de prueba instrumentados con tensiómetros e infiltrómetros para evaluar el comportamiento hidraúlico en el tiempo, junto con ensayos de penetración y plato de carga para la caracterización mecánica. En forma conjunta se propone el desarrollo de modelos numéricos de caracterización hidromecánica. Stabilized soils by compaction, produce materials technical and economic advantages in different types of engineering works. For example, road bases in highways, roads or city streets, containment barriers for sanitary landfill or stabilization ponds, foundation support of building, industrial flat, and other applications. Failures can result in environmental catastrophes, social, and economic loss, so it is important to optimize the design and increase the safety of such buildings. These works involve large surfaces that require systematic tests during construction, so it is necessary to have simple field tests, reliable and efficient to identify physical, mechanical and hydraulic properties. The geo-structures generated by local soil compaction have reduced material and transportation costs. Stabilization can be naturally, or with the addition of mineral aggregates as bentonite, lime and cement. These additions improve the hydraulic and mechanical properties of the material. So, special investigations should be conducted with the materials involved. There are many international studies on compacted soils behavior but their results can not be transferred directly due to the particularities of regional soils. For this research silty soils of central Argentina are the main focus. The soils of Córdoba plains are instability, so are classified as collapsible soils. The results obtained in this work may be extended to a large area of the Province of Cordoba and the Pampas region in general, in order to establish design and construction recommendations. The study includes laboratory and field tests. The materials are pure silty soil, and different aggregates such as bentonite, lime and cement. Tests are planned to evaluate the performance. Laboratory includes rigid and flexible wall cells, confined, triaxial and simple compression tests. For field experimental instrumented embankments will be constructed. A numerical hydromechanical model will be developed.
Resumo:
Bone-mounted robotic guidance for pedicle screw placement has been recently introduced, aiming at increasing accuracy. The aim of this prospective study was to compare this novel approach with the conventional fluoroscopy assisted freehand technique (not the two- or three-dimensional fluoroscopy-based navigation). Two groups were compared: 11 patients, constituting the robotical group, were instrumented with 64 pedicle screws; 23 other patients, constituting the fluoroscopic group, were also instrumented with 64 pedicle screws. Screw position was assessed by two independent observers on postoperative CT-scans using the Rampersaud A to D classification. No neurological complications were noted. Grade A (totally within pedicle margins) accounted for 79% of the screws in the robotically assisted and for 83% of the screws in the fluoroscopic group respectively (p = 0.8). Grade C and D screws, considered as misplacements, accounted for 4.7% of all robotically inserted screws and 7.8% of the fluoroscopically inserted screws (p = 0.71). The current study did not allow to state that robotically assisted screw placement supersedes the conventional fluoroscopy assisted technique, although the literature is more optimistic about the former.
Resumo:
Introduction: Intraoperative EMG based neurophysiological monitoring is increasingly used to assist pedicle screw insertion. We carried out a study comparing the final screw position in the pedicle measured on CT images in relation to its corresponding intraoperative muscle compound action potential (CMAP) values. Material and methods: A total of 189 screws were inserted in thoracolumbar spines of 31 patients during instrumented fusion under EMG control. An observer, blinded to the CMAP value, assessed the horizontal and vertical 'screw edge to pedicle edge' distance perpendicular to the longitudinal axis of the screw on reformatted CT reconstructions using OsiriX software. These distances were analysed with their corresponding CMAP values. Data from 62 thoracic and 127 lumbar screws were processed separately. Interobserver reliability of distance measurements was assessed. Results: No patient suffered neurological injury secondary to screw insertion. Distance measurements were reliable (paired t-test, P = 0.13/0.98 horizontal/vertical). Two screws had their position altered due to low CMAP values suggesting close proximity of nerve tissue. Seventy five percent of screws had CMAP results above 10mA and had an average distance of 0.35cm (SD 0.23) horizontally and 0.46cm (SD 0.26) vertically from the pedicle edge. Additional 12% had a distance from the edge of the pedicle less than 0mm indicating cortical breach but had CMAP values above 10mA. A poor correlation between CMAP values and screw position was found. Discussion: In this study CMAP values above 10mA indicated correct screw position in the majority of cases. The zone of 10-20mA CMAP carries highest risk of a misplaced screw despite high CMAP value (17% of screws this CMAP range). In order to improve accuracy of EMG predictive value further research is warranted including improvement of probing techniques.
Resumo:
We wished to determine if chronic neuropeptide Y (NPY) infusion (1 ng/min for 1 week by Alzet minipump) could decrease plasma renin activity (PRA) and norepinephrine (NE) in a rat myocardial infarction (MI) model of moderate compensated congestive heart failure (CHF). CHF was produced by prior (6-8 weeks) ligation of the left coronary artery; control rats were sham-operated. Carotid arterial blood was drawn for PRA and NE in conscious unrestrained rats that had been instrumented 24 h earlier. MI rats had increased PRA as compared with sham-operated rats [8.73 +/- 1.27 vs. 5.10 +/- 0.91 ng angiotensin (AI) I/ml.h, mean +/- SE]. During chronic NPY infusion, PRA was reduced to normal in the MI group (4.78 +/- 0.91) but was not affected in the sham group (5.65 +/- 0.51). Plasma NE was altered similarly, but the changes did not reach statistical significance. These data suggest that NPY has the capacity to restrain renin release in moderate compensated CHF.
Resumo:
The joint angles of multi-segment foot models have been primarily described using two mathematical methods: the joint coordinate system and the attitude vector. This study aimed to determine whether the angles obtained through these two descriptors are comparable, and whether these descriptors have similar sensitivity to experimental errors. Six subjects walked eight times on an instrumented walkway while the joint angles among shank, hindfoot, medial forefoot, and lateral forefoot were measured. The angles obtained using both descriptors and their sensitivity to experimental errors were compared. There was no overall significant difference between the ranges of motion obtained using both descriptors. However, median differences of more than 6° were noticed for the medial-lateral forefoot joint. For all joints and rotation planes, both descriptors provided highly similar angle patterns (median correlation coefficient: R>0.90), except for the medial-lateral forefoot angle in the transverse plane (median R=0.77). The joint coordinate system was significantly more sensitive to anatomical landmarks misplacement errors. However, the absolute differences of sensitivity were small relative to the joints ranges of motion. In conclusion, the angles obtained using these two descriptors were not identical, but were similar for at least the shank-hindfoot and hindfoot-medial forefoot joints. Therefore, the angle comparison across descriptors is possible for these two joints. Comparison should be done more carefully for the medial-lateral forefoot joint. Moreover, despite different sensitivities to experimental errors, the effects of the experimental errors on the angles were small for both descriptors suggesting that both descriptors can be considered for multi-segment foot models.
Resumo:
Fiber reinforced polymer (FRP) composite materials are making an entry into the construction market in both buildings and pavements. The application to pavements so far has come in the form of joint reinforcement (dowels and tie bars). FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy-coated steel dowels for pavements. Iowa State University has completed a large amount of laboratory research to determine the diameter, spacing, and durability of FRP dowels. This report documents the performance of elliptical FRP dowels installed in a field situation. Ten joints were monitored in three consecutive test sections, for each of three dowel spacings (10, 12, and 15 inches) including one instrumented dowel in each test section. The modulus of dowel bar support was determined using falling weight deflectometer (FWD) testing and a loaded crawl truck. FWD testing was also used to determine load transfer efficiency across the joint. The long-term performance and durability of the concrete was also evaluated by monitoring faulting and joint opening measurements and performing visual distress surveys at each joint. This report also contains similar information for standard round, medium elliptical, and heavy elliptical steel dowels in a portion of the same highway. In addition, this report provides a summary of theoretical analysis used to evaluate joint differential deflection for the dowels.
Resumo:
Fiber composite materials (FRP) are making an entry into the construction market in both buildings and pavements. The application to pavements comes in the form of joint reinforcement (dowels and tie bars) to date. FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy coated dowels for pavements. Iowa State University has completed a large amount of laboratory research into the determination of diameter, spacing, and durability of FRP dowels. This report documents the installation of a series of FRP elliptical-shaped dowel joints (including instrumented units) in a field situation and the beginning of a two-year study to compare laboratory results to in-service pavements. Ten joints were constructed for each of three dowel spacings of 10, 12, and 15 inches ( 254, 305, and 381 mm) with one instrumented joint in each test section. The instrumented bars will be load tested with a loaded truck and FWD testing.
Resumo:
BACKGROUND: Reversed shoulder arthroplasty is an accepted treatment for glenohumeral arthritis associated to rotator cuff deficiency. For most reversed shoulder prostheses, the baseplate of the glenoid component is uncemented and its primary stability is provided by a central peg and peripheral screws. Because of the importance of the primary stability for a good osteo-integration of the baseplate, the optimal fixation of the screws is crucial. In particular, the amplitude of the tightening force of the nonlocking screws is clearly associated to this stability. Since this force is unknown, it is currently not accounted for in experimental or numerical analyses. Thus, the primary goal of this work is to measure this tightening force experimentally. In addition, the tightening torque was also measured, to estimate an optimal surgical value. METHODS: An experimental setup with an instrumented baseplate was developed to measure simultaneously the tightening force, tightening torque and screwing angle, of the nonlocking screws of the Aquealis reversed prosthesis. In addition, the amount of bone volume around each screw was measured with a micro-CT. Measurements were performed on 6 human cadaveric scapulae. FINDINGS: A statistically correlated relationship (p<0.05, R=0.83) was obtained between the maximal tightening force and the bone volume. The relationship between the tightening torque and the bone volume was not statistically significant. INTERPRETATION: The experimental relationship presented in this paper can be used in numerical analyses to improve the baseplate fixation in the glenoid bone.
Resumo:
Deterioration in portland cement concrete (PCC) pavements can occur due to distresses caused by a combination of traffic loads and weather conditions. Hot mix asphalt (HMA) overlay is the most commonly used rehabilitation technique for such deteriorated PCC pavements. However, the performance of these HMA overlaid pavements is hindered due to the occurrence of reflective cracking, resulting in significant reduction of pavement serviceability. Various fractured slab techniques, including rubblization, crack and seat, and break and seat are used to minimize reflective cracking by reducing the slab action. However, the design of structural overlay thickness for cracked and seated and rubblized pavements is difficult as the resulting structure is neither a “true” rigid pavement nor a “true” flexible pavement. Existing design methodologies use the empirical procedures based on the AASHO Road Test conducted in 1961. But, the AASHO Road Test did not employ any fractured slab technique, and there are numerous limitations associated with extrapolating its results to HMA overlay thickness design for fractured PCC pavements. The main objective of this project is to develop a mechanistic-empirical (ME) design approach for the HMA overlay thickness design for fractured PCC pavements. In this design procedure, failure criteria such as the tensile strain at the bottom of HMA layer and the vertical compressive strain on the surface of subgrade are used to consider HMA fatigue and subgrade rutting, respectively. The developed ME design system is also implemented in a Visual Basic computer program. A partial validation of the design method with reference to an instrumented trial project (IA-141, Polk County) in Iowa is provided in this report. Tensile strain values at the bottom of the HMA layer collected from the FWD testing at this project site are in agreement with the results obtained from the developed computer program.
Resumo:
PURPOSE: Spine surgery rates are increasing worldwide. Treatment failures are often attributed to poor patient selection and inappropriate treatment, but for many spinal disorders there is little consensus on the precise indications for surgery. With an aging population, more patients with lumbar degenerative spondylolisthesis (LDS) will present for surgery. The aim of this study was to develop criteria for the appropriateness of surgery in symptomatic LDS. METHODS: A systematic review was carried out to summarize the current level of evidence for the treatment of LDS. Clinical scenarios were generated comprising combinations of signs and symptoms in LDS and other relevant variables. Based on the systematic review and their own clinical experience, twelve multidisciplinary international experts rated each scenario on a 9-point scale (1 highly inappropriate, 9 highly appropriate) with respect to performing decompression only, fusion, and instrumented fusion. Surgery for each theoretical scenario was classified as appropriate, inappropriate, or uncertain based on the median ratings and disagreement in the ratings. RESULTS: 744 hypothetical scenarios were generated; overall, surgery (of some type) was rated appropriate in 27 %, uncertain in 41 % and inappropriate in 31 %. Frank panel disagreement was low (7 % scenarios). Face validity was shown by the logical relationship between each variable's subcategories and the appropriateness ratings, e.g., no/mild disability had a mean appropriateness rating of 2.3 ± 1.5, whereas the rating for moderate disability was 5.0 ± 1.6 and for severe disability, 6.6 ± 1.6. Similarly, the average rating for no/minimal neurological abnormality was 2.3 ± 1.5, increasing to 4.3 ± 2.4 for moderate and 5.9 ± 1.7 for severe abnormality. The three variables most likely (p < 0.0001) to be components of scenarios rated "appropriate" were: severe disability, no yellow flags, and severe neurological deficit. CONCLUSION: This is the first study to report criteria for determining candidacy for surgery in LDS developed by a multidisciplinary international panel using a validated method (RAM). The panel ratings followed logical clinical rationale, indicating good face validity. The work refines clinical classification and the phenotype of degenerative spondylolisthesis. The predictive validity of the criteria should be evaluated prospectively to examine whether patients treated "appropriately" have better clinical outcomes.