795 resultados para Inquiry based teaching of mathematics
Resumo:
Although cross-sectional diffusion tensor imaging (DTI) studies revealed significant white matter changes in mild cognitive impairment (MCI), the utility of this technique in predicting further cognitive decline is debated. Thirty-five healthy controls (HC) and 67 MCI subjects with DTI baseline data were neuropsychologically assessed at one year. Among them, there were 40 stable (sMCI; 9 single domain amnestic, 7 single domain frontal, 24 multiple domain) and 27 were progressive (pMCI; 7 single domain amnestic, 4 single domain frontal, 16 multiple domain). Fractional anisotropy (FA) and longitudinal, radial, and mean diffusivity were measured using Tract-Based Spatial Statistics. Statistics included group comparisons and individual classification of MCI cases using support vector machines (SVM). FA was significantly higher in HC compared to MCI in a distributed network including the ventral part of the corpus callosum, right temporal and frontal pathways. There were no significant group-level differences between sMCI versus pMCI or between MCI subtypes after correction for multiple comparisons. However, SVM analysis allowed for an individual classification with accuracies up to 91.4% (HC versus MCI) and 98.4% (sMCI versus pMCI). When considering the MCI subgroups separately, the minimum SVM classification accuracy for stable versus progressive cognitive decline was 97.5% in the multiple domain MCI group. SVM analysis of DTI data provided highly accurate individual classification of stable versus progressive MCI regardless of MCI subtype, indicating that this method may become an easily applicable tool for early individual detection of MCI subjects evolving to dementia.
Resumo:
This project was undertaken to study the relationships between the performance of locally available asphalts and their physicochemical properties under Iowa conditions with the ultimate objective of development of a locally and performance-based asphalt specification for durable pavements. Physical and physicochemical tests were performed on three sets of asphalt samples including: (a) twelve samples from local asphalt suppliers and their TFOT residues, (b) six core samples of known service records, and (c) a total of 79 asphalts from 10 pavement projects including original, lab aged and recovered asphalts from field mixes, as well as from lab aged mixes. Tests included standard rheological tests, HP-GPC and TMA. Some specific viscoelastic tests (at 5 deg C) were run on b samples and on some a samples. DSC and X-ray diffraction studies were performed on a and b samples. Furthermore, NMR techniques were applied to some a, b and c samples. Efforts were made to identify physicochemical properties which are correlated to physical properties known to affect field performance. The significant physicochemical parameters were used as a basis for an improved performance-based trial specification for Iowa to ensure more durable pavements.
Resumo:
This paper presents automated segmentation of structuresin the Head and Neck (H\&N) region, using an activecontour-based joint registration and segmentation model.A new atlas selection strategy is also used. Segmentationis performed based on the dense deformation fieldcomputed from the registration of selected structures inthe atlas image that have distinct boundaries, onto thepatient's image. This approach results in robustsegmentation of the structures of interest, even in thepresence of tumors, or anatomical differences between theatlas and the patient image. For each patient, an atlasimage is selected from the available atlas-database,based on the similarity metric value, computed afterperforming an affine registration between each image inthe atlas-database and the patient's image. Unlike manyof the previous approaches in the literature, thesimilarity metric is not computed over the entire imageregion; rather, it is computed only in the regions ofsoft tissue structures to be segmented. Qualitative andquantitative evaluation of the results is presented.
Resumo:
This is the first report of 6 tasks to be performed in an effort to establish locally-based quality and performance criteria for asphalts, and ultimately to develop performance-related specifications based on simple physicochemical methods. Three of the most promising chemical methods (high performance liquid chromatography (HPLC), thermal analysis, and X-ray diffraction were selected to analyze 4 different types of samples. The results will indicate the fundamental asphalt property variables that directly affect the field performance in Iowa. The details of the materials and procedures employed are described, and the results of the tests are presented.
Resumo:
This study looks at how increased memory utilisation affects throughput and energy consumption in scientific computing, especially in high-energy physics. Our aim is to minimise energy consumed by a set of jobs without increasing the processing time. The earlier tests indicated that, especially in data analysis, throughput can increase over 100% and energy consumption decrease 50% by processing multiple jobs in parallel per CPU core. Since jobs are heterogeneous, it is not possible to find an optimum value for the number of parallel jobs. A better solution is based on memory utilisation, but finding an optimum memory threshold is not straightforward. Therefore, a fuzzy logic-based algorithm was developed that can dynamically adapt the memory threshold based on the overall load. In this way, it is possible to keep memory consumption stable with different workloads while achieving significantly higher throughput and energy-efficiency than using a traditional fixed number of jobs or fixed memory threshold approaches.
Resumo:
Changes of functional connectivity in prodromal and early Alzheimer's disease can arise from compensatory and/or pathological processes. We hypothesized that i) there is impairment of effective inhibition associated with early Alzheimer's disease that may lead to ii) a paradoxical increase of functional connectivity. To this end we analyzed effective connectivity in 14 patients and 16 matched controls using dynamic causal modeling of functional MRI time series recorded during a visual inter-hemispheric integration task. By contrasting co-linear with non co-linear bilateral gratings, we estimated inhibitory top-down effects within the visual areas. The anatomical areas constituting the functional network of interest were identified with categorical functional MRI contrasts (Stimuli>Baseline and Co-linear gratings>Non co-linear gratings), which implicated V1 and V3v in both hemispheres. A model with reciprocal excitatory intrinsic connections linking these four regions and modulatory inhibitory effects exerted by V3v on V1 optimally explained the functional MRI time series in both subject groups. However, Alzheimer's disease was associated with significantly weakened intrinsic and modulatory connections. Top-down inhibitory effects, previously detected as relative deactivations of V1 in young adults, were observed neither in our aged controls nor in patients. We conclude that effective inhibition weakens with age and more so in early Alzheimer's disease.
Resumo:
Multiple Sclerosis is the most common non-traumatic cause of neurologicaldisability in young people. There is no cure yet, and until recently, few long-termtherapies existed. Interferon beta (IFNβ) was the first treatment, and remains the mostcommonly prescribed. One of the most significant problems of IFNβ therapy is theproduction of drug specific antibodies. Up to 45% of patients develop neutralizingantibodies (NAbs) to IFNβ products. The neutralizing antibody binds to the biologicalagent preventing its interaction with its receptor, inhibiting the biological action of theprotein, which abrogates the clinical efficacy of IFNβ treatment. Interferon-betamediates its response by binding to its high affinity cell surface receptor and initiatingthe JAK/STAT signalling cascade. In this project we have analyzed the IFNβ signalingpathway in macrophages when neutralizing antibodies are present. The response tothis pathway after IFNβ stimulation shows a transient oscillatory rhythm of STAT1phosphorylation, which varies as NAbs concentration increases. To improve ourunderstanding of that behavior, we extended an existing mathematical model based onnonlinear ordinary differential equations of JAK/STAT pathway by including IFN-NAbassociation and IFN-activation receptor. Combining our theoretical model withexperimental data we could study the role of neutralizing antibodies on the molecularresponse and determine its lifetime after cytokine stimulation.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
A nonlocal variational formulation for interpolating a sparsel sampled image is introduced in this paper. The proposed variational formulation, originally motivated by image inpainting problems, encouragesthe transfer of information between similar image patches, following the paradigm of exemplar-based methods. Contrary to the classical inpaintingproblem, no complete patches are available from the sparse imagesamples, and the patch similarity criterion has to be redefined as here proposed. Initial experimental results with the proposed framework, at very low sampling densities, are very encouraging. We also explore somedepartures from the variational setting, showing a remarkable ability to recover textures at low sampling densities.
Resumo:
A multicomponent indicator displacement assay ( MIDA) based on an organometallic receptor and three dyes can be used for the identification and quantification of nucleotides in aqueous solution at neutral pH.
Resumo:
Rapid amplification of cDNA ends (RACE) is a widely used approach for transcript identification. Random clone selection from the RACE mixture, however, is an ineffective sampling strategy if the dynamic range of transcript abundances is large. To improve sampling efficiency of human transcripts, we hybridized the products of the RACE reaction onto tiling arrays and used the detected exons to delineate a series of reverse-transcriptase (RT)-PCRs, through which the original RACE transcript population was segregated into simpler transcript populations. We independently cloned the products and sequenced randomly selected clones. This approach, RACEarray, is superior to direct cloning and sequencing of RACE products because it specifically targets new transcripts and often results in overall normalization of transcript abundance. We show theoretically and experimentally that this strategy leads indeed to efficient sampling of new transcripts, and we investigated multiplexing the strategy by pooling RACE reactions from multiple interrogated loci before hybridization.
Resumo:
Ecological parameters vary in space, and the resulting heterogeneity of selective forces can drive adaptive population divergence. Clinal variation represents a classical model to study the interplay of gene flow and selection in the dynamics of this local adaptation process. Although geographic variation in phenotypic traits in discrete populations could be remainders of past adaptation, maintenance of adaptive clinal variation requires recurrent selection. Clinal variation in genetically determined traits is generally attributed to adaptation of different genotypes to local conditions along an environmental gradient, although it can as well arise from neutral processes. Here, we investigated whether selection accounts for the strong clinal variation observed in a highly heritable pheomelanin-based color trait in the European barn owl by comparing spatial differentiation of color and of neutral genes among populations. Barn owl's coloration varies continuously from white in southwestern Europe to reddish-brown in northeastern Europe. A very low differentiation at neutral genetic markers suggests that substantial gene flow occurs among populations. The persistence of pronounced color differentiation despite this strong gene flow is consistent with the hypothesis that selection is the primary force maintaining color variation among European populations. Therefore, the color cline is most likely the result of local adaptation.
Resumo:
This project was undertaken to study the relationships between the performance of locally available asphalts and their physicochemical properties under Iowa conditions with the ultimate objective of development of a locally and performance-based asphalt specification for durable pavements. Physical and physicochemical tests were performed on three sets of asphalt samples including: (a) twelve samples from local asphalt suppliers and their TFOT residues, (b) six core samples of known service records, and (c) a total of 79 asphalts from 10 pavement projects including original, lab aged and recovered asphalts from field mixes, as well as from lab aged mixes. Tests included standard rheological tests, HP-GPC and TMA. Some specific viscoelastic tests (at 5 deg C) were run on b samples and on some a samples. DSC and X-ray diffraction studies were performed on a and b samples. Furthermore, NMR techniques were applied to some a, b and c samples. Efforts were made to identify physicochemical properties which are correlated to physical properties known to affect field performance. The significant physicochemical parameters were used as a basis for an improved performance-based trial specification for Iowa to ensure more durable pavements.