918 resultados para Information Models
Resumo:
There are many use cases in business process management that require the comparison of behavioral models. For instance, verifying equivalence is the basis for assessing whether a technical workflow correctly implements a business process, or whether a process realization conforms to a reference process. This paper proposes an equivalence relation for models that describe behaviors based on the concurrency semantics of net theory and for which an alignment relation has been defined. This equivalence, called isotactics, preserves the level of concurrency of aligned operations. Furthermore, we elaborate on the conditions under which an alignment relation can be classified as an abstraction. Finally, we show that alignment relations induced by structural refinements of behavioral models are indeed behavioral abstractions.
Resumo:
In this paper, a class of fractional advection–dispersion models (FADMs) is considered. These models include five fractional advection–dispersion models, i.e., the time FADM, the mobile/immobile time FADM with a time Caputo fractional derivative 0 < γ < 1, the space FADM with two sides Riemann–Liouville derivatives, the time–space FADM and the time fractional advection–diffusion-wave model with damping with index 1 < γ < 2. These equations can be used to simulate the regional-scale anomalous dispersion with heavy tails. We propose computationally effective implicit numerical methods for these FADMs. The stability and convergence of the implicit numerical methods are analysed and compared systematically. Finally, some results are given to demonstrate the effectiveness of theoretical analysis.
Resumo:
Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration.
Resumo:
In this paper, a class of fractional advection-dispersion models (FADM) is investigated. These models include five fractional advection-dispersion models: the immobile, mobile/immobile time FADM with a temporal fractional derivative 0 < γ < 1, the space FADM with skewness, both the time and space FADM and the time fractional advection-diffusion-wave model with damping with index 1 < γ < 2. They describe nonlocal dependence on either time or space, or both, to explain the development of anomalous dispersion. These equations can be used to simulate regional-scale anomalous dispersion with heavy tails, for example, the solute transport in watershed catchments and rivers. We propose computationally effective implicit numerical methods for these FADM. The stability and convergence of the implicit numerical methods are analyzed and compared systematically. Finally, some results are given to demonstrate the effectiveness of our theoretical analysis.
Resumo:
Traditional analytic models for power system fault diagnosis are usually formulated as an unconstrained 0–1 integer programming problem. The key issue of the models is to seek the fault hypothesis that minimizes the discrepancy between the actual and the expected states of the concerned protective relays and circuit breakers. The temporal information of alarm messages has not been well utilized in these methods, and as a result, the diagnosis results may be not unique and hence indefinite, especially when complicated and multiple faults occur. In order to solve this problem, this paper presents a novel analytic model employing the temporal information of alarm messages along with the concept of related path. The temporal relationship among the actions of protective relays and circuit breakers, and the different protection configurations in a modern power system can be reasonably represented by the developed model, and therefore, the diagnosed results will be more definite under different circumstances of faults. Finally, an actual power system fault was served to verify the proposed method.
Resumo:
The complex design process of airport terminal needs to support a wide range of changes in operational facilities for both usual and unusual/emergency events. Process model describes how activities within a process are connected and also states logical information flow of the various activities. The traditional design process overlooks the necessity of information flow from the process model to the actual building design, which needs to be considered as a integral part of building design. The current research introduced a generic method to obtain design related information from process model to incorporate with the design process. Appropriate integration of the process model prior to the design process uncovers the relationship exist between spaces and their relevant functions, which could be missed in the traditional design approach. The current paper examines the available Business Process Model (BPM) and generates modified Business Process Model(mBPM) of check-in facilities of Brisbane International airport. The information adopted from mBPM then transform into possible physical layout utilizing graph theory.
Resumo:
Articular cartilage is a highly resilient tissue located at the ends of long bones. It has a zonal structure, which has functional significance in load-bearing. Cartilage does not spontaneously heal itself when damaged, and untreated cartilage lesions or age-related wear often lead to osteoarthritis (OA). OA is a degenerative condition that is highly prevalent, age-associated, and significantly affects patient mobility and quality of life. There is no cure for OA, and patients usually resort to replacing the biological joint with an artificial prosthesis. An alternative approach is to dynamically regenerate damaged or diseased cartilage through cartilage tissue engineering, where cells, materials, and stimuli are combined to form new cartilage. However, despite extensive research, major limitations remain that have prevented the wide-spread application of tissue-engineered cartilage. Critically, there is a dearth of information on whether autologous chondrocytes obtained from OA patients can be used to successfully generate cartilage tissues with structural hierarchy typically found in normal articular cartilage. I aim to address these limitations in this thesis by showing that chondrocyte subpopulations isolated from macroscopically normal areas of the cartilage can be used to engineer stratified cartilage tissues and that compressive loading plays an important role in zone-dependent biosynthesis of these chondrocytes. I first demonstrate that chondrocyte subpopulations from the superficial (S) and middle/deep (MD) zones of OA cartilage are responsive to compressive stimulation in vitro, and that the effect of compression on construct quality is zone-dependent. I also show that compressive stimulation can influence pericelluar matrix production, matrix metalloproteinase secretion, and cytokine expression in zonal chondrocytes in an alginate hydrogel model. Subsequently, I focus on recreating the zonal structure by forming layered constructs using the alginate-released chondrocyte (ARC) method either with or without polymeric scaffolds. Resulting zonal ARC constructs had hyaline morphology, and expressed cartilage matrix molecules such as proteoglycans and collagen type II in both scaffold-free and scaffold-based approaches. Overall, my findings demonstrate that chondrocyte subpopulations obtained from OA joints respond sensitively to compressive stimulation, and are able to form cartilaginous constructs with stratified organization similar to native cartilage using the scaffold-free and scaffold-based ARC technique. The ultimate goal in tissue engineering is to help provide improved treatment options for patients suffering from debilitating conditions such as OA. Further investigations in developing functional cartilage replacement tissues using autologous chondrocytes will bring us a step closer to improving the quality of life for millions of OA patients worldwide.
Resumo:
This study proceeds from a central interest in the importance of systematically evaluating operational large-scale integrated information systems (IS) in organisations. The study is conducted within the IS-Impact Research Track at Queensland University of Technology (QUT). The goal of the IS-Impact Track is, "to develop the most widely employed model for benchmarking information systems in organizations for the joint benefit of both research and practice" (Gable et al, 2009). The track espouses programmatic research having the principles of incrementalism, tenacity, holism and generalisability through replication and extension research strategies. Track efforts have yielded the bicameral IS-Impact measurement model; the ‘impact’ half includes Organisational-Impact and Individual-Impact dimensions; the ‘quality’ half includes System-Quality and Information-Quality dimensions. Akin to Gregor’s (2006) analytic theory, the ISImpact model is conceptualised as a formative, multidimensional index and is defined as "a measure at a point in time, of the stream of net benefits from the IS, to date and anticipated, as perceived by all key-user-groups" (Gable et al., 2008, p: 381). The study adopts the IS-Impact model (Gable, et al., 2008) as its core theory base. Prior work within the IS-Impact track has been consciously constrained to Financial IS for their homogeneity. This study adopts a context-extension strategy (Berthon et al., 2002) with the aim "to further validate and extend the IS-Impact measurement model in a new context - i.e. a different IS - Human Resources (HR)". The overarching research question is: "How can the impacts of large-scale integrated HR applications be effectively and efficiently benchmarked?" This managerial question (Cooper & Emory, 1995) decomposes into two more specific research questions – In the new HR context: (RQ1): "Is the IS-Impact model complete?" (RQ2): "Is the ISImpact model valid as a 1st-order formative, 2nd-order formative multidimensional construct?" The study adhered to the two-phase approach of Gable et al. (2008) to hypothesise and validate a measurement model. The initial ‘exploratory phase’ employed a zero base qualitative approach to re-instantiating the IS-Impact model in the HR context. The subsequent ‘confirmatory phase’ sought to validate the resultant hypothesised measurement model against newly gathered quantitative data. The unit of analysis for the study is the application, ‘ALESCO’, an integrated large-scale HR application implemented at Queensland University of Technology (QUT), a large Australian university (with approximately 40,000 students and 5000 staff). Target respondents of both study phases were ALESCO key-user-groups: strategic users, management users, operational users and technical users, who directly use ALESCO or its outputs. An open-ended, qualitative survey was employed in the exploratory phase, with the objective of exploring the completeness and applicability of the IS-Impact model’s dimensions and measures in the new context, and to conceptualise any resultant model changes to be operationalised in the confirmatory phase. Responses from 134 ALESCO users to the main survey question, "What do you consider have been the impacts of the ALESCO (HR) system in your division/department since its implementation?" were decomposed into 425 ‘impact citations.’ Citation mapping using a deductive (top-down) content analysis approach instantiated all dimensions and measures of the IS-Impact model, evidencing its content validity in the new context. Seeking to probe additional (perhaps negative) impacts; the survey included the additional open question "In your opinion, what can be done better to improve the ALESCO (HR) system?" Responses to this question decomposed into a further 107 citations which in the main did not map to IS-Impact, but rather coalesced around the concept of IS-Support. Deductively drawing from relevant literature, and working inductively from the unmapped citations, the new ‘IS-Support’ construct, including the four formative dimensions (i) training, (ii) documentation, (iii) assistance, and (iv) authorisation (each having reflective measures), was defined as: "a measure at a point in time, of the support, the [HR] information system key-user groups receive to increase their capabilities in utilising the system." Thus, a further goal of the study became validation of the IS-Support construct, suggesting the research question (RQ3): "Is IS-Support valid as a 1st-order reflective, 2nd-order formative multidimensional construct?" With the aim of validating IS-Impact within its nomological net (identification through structural relations), as in prior work, Satisfaction was hypothesised as its immediate consequence. The IS-Support construct having derived from a question intended to probe IS-Impacts, too was hypothesised as antecedent to Satisfaction, thereby suggesting the research question (RQ4): "What is the relative contribution of IS-Impact and IS-Support to Satisfaction?" With the goal of testing the above research questions, IS-Impact, IS-Support and Satisfaction were operationalised in a quantitative survey instrument. Partial least squares (PLS) structural equation modelling employing 221 valid responses largely evidenced the validity of the commencing IS-Impact model in the HR context. ISSupport too was validated as operationalised (including 11 reflective measures of its 4 formative dimensions). IS-Support alone explained 36% of Satisfaction; IS-Impact alone 70%; in combination both explaining 71% with virtually all influence of ISSupport subsumed by IS-Impact. Key study contributions to research include: (1) validation of IS-Impact in the HR context, (2) validation of a newly conceptualised IS-Support construct as important antecedent of Satisfaction, and (3) validation of the redundancy of IS-Support when gauging IS-Impact. The study also makes valuable contributions to practice, the research track and the sponsoring organisation.
Resumo:
Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.
Resumo:
Much of our understanding of human thinking is based on probabilistic models. This innovative book by Jerome R. Busemeyer and Peter D. Bruza argues that, actually, the underlying mathematical structures from quantum theory provide a much better account of human thinking than traditional models. They introduce the foundations for modelling probabilistic-dynamic systems using two aspects of quantum theory. The first, "contextuality", is a way to understand interference effects found with inferences and decisions under conditions of uncertainty. The second, "entanglement", allows cognitive phenomena to be modelled in non-reductionist ways. Employing these principles drawn from quantum theory allows us to view human cognition and decision in a totally new light...
Resumo:
Recent efforts in mission planning for underwater vehicles have utilised predictive models to aid in navigation, optimal path planning and drive opportunistic sampling. Although these models provide information at a unprecedented resolutions and have proven to increase accuracy and effectiveness in multiple campaigns, most are deterministic in nature. Thus, predictions cannot be incorporated into probabilistic planning frameworks, nor do they provide any metric on the variance or confidence of the output variables. In this paper, we provide an initial investigation into determining the confidence of ocean model predictions based on the results of multiple field deployments of two autonomous underwater vehicles. For multiple missions conducted over a two-month period in 2011, we compare actual vehicle executions to simulations of the same missions through the Regional Ocean Modeling System in an ocean region off the coast of southern California. This comparison provides a qualitative analysis of the current velocity predictions for areas within the selected deployment region. Ultimately, we present a spatial heat-map of the correlation between the ocean model predictions and the actual mission executions. Knowing where the model provides unreliable predictions can be incorporated into planners to increase the utility and application of the deterministic estimations.