917 resultados para Imput-output tables
Resumo:
The Iowa Department of Education collects data on fiscal year credit enrollment, non-credit enrollment, economic development programs, and institutional data (i.e., faculty information, tuition). This report summarizes several aspects of the data.
Resumo:
The Iowa Department of Education collects data on fiscal year credit enrollment, non-credit enrollment, economic development programs, and institutional data (i.e., faculty information, tuition). This report summarizes several aspects of the data.
Resumo:
PURPOSE: To use measurement by cycling power meters (Pmes) to evaluate the accuracy of commonly used models for estimating uphill cycling power (Pest). Experiments were designed to explore the influence of wind speed and steepness of climb on accuracy of Pest. The authors hypothesized that the random error in Pest would be largely influenced by the windy conditions, the bias would be diminished in steeper climbs, and windy conditions would induce larger bias in Pest. METHODS: Sixteen well-trained cyclists performed 15 uphill-cycling trials (range: length 1.3-6.3 km, slope 4.4-10.7%) in a random order. Trials included different riding position in a group (lead or follow) and different wind speeds. Pmes was quantified using a power meter, and Pest was calculated with a methodology used by journalists reporting on the Tour de France. RESULTS: Overall, the difference between Pmes and Pest was -0.95% (95%CI: -10.4%, +8.5%) for all trials and 0.24% (-6.1%, +6.6%) in conditions without wind (<2 m/s). The relationship between percent slope and the error between Pest and Pmes were considered trivial. CONCLUSIONS: Aerodynamic drag (affected by wind velocity and orientation, frontal area, drafting, and speed) is the most confounding factor. The mean estimated values are close to the power-output values measured by power meters, but the random error is between ±6% and ±10%. Moreover, at the power outputs (>400 W) produced by professional riders, this error is likely to be higher. This observation calls into question the validity of releasing individual values without reporting the range of random errors.
Resumo:
Objective: Respiratory assistance with nasal continuous positive airway pressure (n-CPAP) is an effective treatment in premature newborns presenting respiratory distress. The aim of the study was to depict cardiac function, systemic (Qs) and pulmonary output (Qp) by echocardiography in stable premature infants requiring prolonged n-CPAP. Our hypothesis was that n-CPAP could reduce pulmonary blood flow. Patients and methods: All premature infants < 32 weeks gestation, > 7 days-old, requiring n-CPAP without severe respiratory compromise nor need for additional oxygen were prospectively included. Every patient had a first echocardiography while on n-CPAP. N-CPAP was then discontinued for two hours and a second echocardiography was performed. Results: 17 premature infants were included. Mean gestational age was 28 ± 2 weeks and mean weight 1.1 ± 0.3 kg. Following retrieval of n-CPAP we observed an increase in Qp of 53 ml/kg/min (95% CI 19-87 ml/kg/min), but no significant change in Qs. Consecutively a significant increase in Qp/Qs ratio of 16% was found (95% CI 7-29%). Conclusions: Nasal continuous positive airway pressure has hemodynamic effects in preterm infants in stable pulmonary and cardiac conditions. It reduces pulmonary output without interference with systemic output.
Resumo:
Résumé: Output, inflation and interest rates are key macroeconomic variables, in particular for monetary policy. In modern macroeconomic models they are driven by random shocks which feed through the economy in various ways. Models differ in the nature of shocks and their transmission mechanisms. This is the common theme underlying the three essays of this thesis. Each essay takes a different perspective on the subject: First, the thesis shows empirically how different shocks lead to different behavior of interest rates over the business cycle. For commonly analyzed shocks (technology and monetary policy errors), the patterns square with standard models. The big unknown are sources of inflation persistence. Then the thesis presents a theory of monetary policy, when the central bank can better observe structural shocks than the public. The public will then seek to infer the bank's extra knowledge from its policy actions and expectation management becomes a key factor of optimal policy. In a simple New Keynesian model, monetary policy becomes more concerned with inflation persistence than otherwise. Finally, the thesis points to the huge uncertainties involved in estimating the responses to structural shocks with permanent effects.
Resumo:
En este trabajo se pretende ofrecer una visión del sector Agroalimentario (SAA) catalán, y muy especialmente, de cual es su situación comparativa dentro del SAA español. Analizando por medio de las tablas input-output aquellas ramas del SAA que actúan como motor en cada una de las economías estudiadas, al mismo tiempo que se detectan las analogías o divergencias entre las dos realidades, la autónoma y la nacional. Los indicadores utilizados para el estudio de la tabla input-output son: Chenery-Watanabe, Rasmussen, Backward linkages, Forward linkdages, multiplicador renta y multiplicador de las importaciones.
Resumo:
This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second.
Resumo:
A variety of technologies have been developed to assist decision-making during the management of patients with acute brain injury who require intensive care. A large body of research has been generated describing these various technologies. The Neurocritical Care Society (NCS) in collaboration with the European Society of Intensive Care Medicine (ESICM), the Society for Critical Care Medicine (SCCM), and the Latin America Brain Injury Consortium (LABIC) organized an international, multidisciplinary consensus conference to perform a systematic review of the published literature to help develop evidence-based practice recommendations on bedside physiologic monitoring. This supplement contains a Consensus Summary Statement with recommendations and individual topic reviews on physiologic processes important in the care of acute brain injury. In this article we provide the evidentiary tables for select topics including systemic hemodynamics, intracranial pressure, brain and systemic oxygenation, EEG, brain metabolism, biomarkers, processes of care and monitoring in emerging economies to provide the clinician ready access to evidence that supports recommendations about neuromonitoring.
Resumo:
Electrical impedance tomography (EIT) is a non-invasive imaging technique that can measure cardiac-related intra-thoracic impedance changes. EIT-based cardiac output estimation relies on the assumption that the amplitude of the impedance change in the ventricular region is representative of stroke volume (SV). However, other factors such as heart motion can significantly affect this ventricular impedance change. In the present case study, a magnetic resonance imaging-based dynamic bio-impedance model fitting the morphology of a single male subject was built. Simulations were performed to evaluate the contribution of heart motion and its influence on EIT-based SV estimation. Myocardial deformation was found to be the main contributor to the ventricular impedance change (56%). However, motion-induced impedance changes showed a strong correlation (r = 0.978) with left ventricular volume. We explained this by the quasi-incompressibility of blood and myocardium. As a result, EIT achieved excellent accuracy in estimating a wide range of simulated SV values (error distribution of 0.57 ± 2.19 ml (1.02 ± 2.62%) and correlation of r = 0.996 after a two-point calibration was applied to convert impedance values to millilitres). As the model was based on one single subject, the strong correlation found between motion-induced changes and ventricular volume remains to be verified in larger datasets.