966 resultados para Implicit finite difference approximation scheme
Resumo:
The search for ever smaller device and without loss of performance has been increasingly investigated by researchers involving applied electromagnetics. Antennas using ceramics materials with a high dielectric constant, whether acting as a substract element of patch radiating or as the radiant element are in evidence in current research, that due to the numerous advantages offered, such as: low profile, ability to reduce the its dimensions when compared to other devices, high efficiency of ratiation, suitability the microwave range and/or millimeter wave, low temperature coefficient and low cost. The reason for this high efficiency is that the dielectric losses of ceramics are very low when compared to commercially materials sold used in printed circuit boards, such as fiberglass and phenolite. These characteristics make ceramic devices suitable for operation in the microwave band. Combining the design of patch antennas and/or dielectric resonator antenna (DRA) to certain materials and the method of synthesis of these powders in the manufacture of devices, it s possible choose a material with a dielectric constant appropriate for the design of an antenna with the desired size. The main aim of this work is the design of patch antennas and DRA antennas on synthesis of ceramic powders (synthesis by combustion and polymeric precursors - Pe- chini method) nanostructured with applications in the microwave band. The conventional method of mix oxides was also used to obtain nanometric powders for the preparation of tablets and dielectric resonators. The devices manufactured and studied on high dielectric constant materials make them good candidates to have their small size compared to other devices operating at the same frequency band. The structures analyzed are excited by three different techniques: i) microstrip line, ii) aperture coupling and iii) inductive coupling. The efficiency of these techniques have been investigated experimentally and compared with simulations by Ansoft HFSS, used in the accurate analysis of the electromagnetic behavior of antennas over the finite element method (FEM). In this thesis a literature study on the theory of microstrip antennas and DRA antenna is performed. The same study is performed about the materials and methods of synthesis of ceramic powders, which are used in the manufacture of tablets and dielectric cylinders that make up the devices investigated. The dielectric media which were used to support the analysis of the DRA and/or patch antennas are analyzed using accurate simulations using the finite difference time domain (FDTD) based on the relative electrical permittivity (er) and loss tangent of these means (tand). This work also presents a study on artificial neural networks, showing the network architecture used and their characteristics, as well as the training algorithms that were used in training and modeling some parameters associated with the devices investigated
Resumo:
The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm
Resumo:
This work shows a theoretical analysis together with numerical and experimental results of transmission characteristics from the microstrip bandpass filters with different geometries. These filters are built over isotropic dielectric substrates. The numerical analysis is made by specifical commercial softwares, like Ansoft Designer and Agilent Advanced Design System (ADS). In addition to these tools, a Matlab Script was built to analyze the filters through the Finite-Difference Time-Domain (FDTD) method. The filters project focused the development of the first stage of filtering in the ITASAT s Transponder receptor, and its integration with the others systems. Some microstrip filters architectures have been studied, aiming the viability of implementation and suitable practical application for the purposes of the ITASAT Project due to its lowspace occupation in the lower UHF frequencies. The ITASAT project is a Universityexperimental project which will build a satellite to integrate the Brazilian Data Collect System s satellite constellation, with efforts of many Brazilian institutes, like for example AEB (Brazilian Spatial Agency), ITA (Technological Institute of Aeronautics), INPE/CRN (National Institute of Spatial Researches/Northeastern Regional Center) and UFRN (Federal University of Rio Grande do Norte). Comparisons were made between numerical and experimental results of all filters, where good agreements could be noticed, reaching the most of the objectives. Also, post-work improvements were suggested.
Resumo:
Urban centers in Pitimbu Watershed use significant groundwater sources for public supply. Therefore, studies in Dunas Barreiras aquifer are relevant to expand knowledge about it and help manage water resources in the region. An essential tool for this management is the numerical modeling of groundwater flow. In this work, we developed a groundwater flow model for Pitimbu Watershed, using the Visual Modflow, version 2.7.1., which uses finite difference method for solving the govern equation of the dynamics of groundwater flow. We carried out the numerical simulation of steady-state model for the entire region of the basin. The model was built in the geographical, geomorphological and hydrogeological study of the area, which defined the boundary conditions and the parameters required for the numerical calculation. Owing to unavailability of current data based on monitoring of the aquifer it was not possible to calibrate the model. However, the simulation results showed that the overall water balance approached zero, therefore satisfying the equation for the three-dimensional behavior of the head water in steady state. Variations in aquifer recharge data were made to verify the impact of this contribution on the water balance of the system, especially in the scenario in which recharge due to drains and sinks was removed. According to the results generated by Visual Modflow occurred significantly hydraulic head lowering, ranging from 16,4 to 82 feet of drawdown. With the results obtained, it can be said that modeling is performed as a valid tool for the management of water resources in Pitimbu River Basin, and to support new studies
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Calculation for the electronic excitation of the ground state of H-2 to B (1) Sigma(u)(+) and b(3) Sigma(u)(+) states by positronium- (Ps) atom impact has been carried out using the first Born approximation considering discrete Ps excitations up to n = 6 and Ps ionization in the final state. To include the effect of electron exchange, we propose an alternative approximation scheme in the light of the Rudge approach, which takes into account the composite nature of the Ps-atom projectile.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents the fabrication and analysis of a three-dimensional FCC photonic crystal (PhC) based on a self-assembly synthesis of monodispersive latex spheres. Experimental optical characterization, achieved by measurements of the specular reflectance under variable angles, indicated the clear presence of a Bragg diffraction pattern. Results are further explored by theoretical calculations based on the Finite Difference Time Domain (FDTD) method to determine the full PhC band structure.
Resumo:
The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.
Resumo:
An inverse problem concerning the industrial process of steel bars hardening and tempering is considered. The associated optimization problem is formulated in terms of membership functions and, for the sake of comparison, also in terms of quadratic residuals; both geometric and electromagnetic design variables have been considered. The numerical solution is achieved by coupling a finite difference procedure for the calculation of the electromagnetic and thermal fields to a deterministic strategy of minimization based on modified Flctcher and Reeves method. © 1998 IEEE.
Resumo:
The transient process of solidification of laminar liquid flow (water) submitted to super-cooling was investigated both theoretically and experimentally. In this study an alternative analytical formulation and numerical approach were adopted resulting in the unsteady model with temperature dependent thermophysical properties in the solid region. The proposed model is based upon the fundamental equations of energy balance in the solid and liquid regions as well as across the solidification front. The basic equations and the associated boundary and initial conditions were made dimensionless by using the Landau transformation to immobilize the moving front and render the problem to a fixed plane type problem. A laminar velocity profile is admitted in the liquid domain and the resulting equations were discretized using the finite difference approach. The numerical predictions obtained were compared with the available results based on other models and concepts such as Neumann analytical model, the apparent thermal capacity model due to Bonacina and the conventional fixed grid energy model due to Goodrich. To obtain further comparisons and more validation of the model and the numerical solution, an experimental rig was constructed and instrumented permitting very well controlled experimental measurements. The numerical predictions were compared with the experimental results and the agreement was found satisfactory.
Resumo:
This paper presents a comparative analysis between the experimental characterization and the numerical simulation results for a three-dimensional FCC photonic crystal (PhC) based on a self-assembly synthesis of monodispersive latex spheres. Specifically, experimental optical characterization, by means of reflectance measurements under variable angles over the lattice plane family [1,1, 1], are compared to theoretical calculations based on the Finite Di®erence Time Domain (FDTD) method, in order to investigate the correlation between theoretical predictions and experimental data. The goal is to highlight the influence of crystal defects on the achieved performance.
Resumo:
The results of the histopathological analyses after the implantation of highly crystalline PVA microspheres in subcutaneous tissues of Wistar rats are here in reported. Three different groups of PVA microparticles were systematically studied: highly crystalline, amorphous, and commercial ones. In addition to these experiments, complementary analyses of architectural complexity were performed using fractal dimension (FD), and Shannon's entropy (SE) concepts. The highly crystalline microspheres induced inflammatory reactions similar to the ones observed for the commercial ones, while the inflammatory reactions caused by the amorphous ones were less intense. Statistical analyses of the subcutaneous tissues of Wistar rats implanted with the highly crystalline microspheres resulted in FD and SE values significantly higher than the statistical parameters observed for the amorphous ones. The FD and SE parameters obtained for the subcutaneous tissues of Wistar rats implanted with crystalline and commercial microparticles were statistically similar. Briefly, the results indicated that the new highly crystalline microspheres had biocompatible behavior comparable to the commercial ones. In addition, statistical tools such as FD and SE analyses when combined with histopathological analyses can be useful tools to investigate the architectural complexity tissues caused by complex inflammatory reactions. © 2012 WILEY PERIODICALS, INC.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS