861 resultados para INSITU COMPOSITES
Resumo:
Fiber reinforced epoxy composites are used in a wide variety of applications in the aerospace field. These materials have high specific moduli, high specific strength and their properties can be tailored to application requirements. In order to screening optimum materials behavior, the effects of external environments on the mechanical properties during usage must be clearly understood. The environmental action, such as high moisture concentration, high temperatures, corrosive fluids or ultraviolet radiation (UV), can affect the performance of advanced composites during service. These factors can limit the applications of composites by deteriorating the mechanical properties over a period of time. Properties determination is attributed to the chemical and/or physical damages caused in the polymer matrix, loss of adhesion of fiber/resin interface, and/or reduction of fiber strength and stiffness. The dynamic elastic properties are important characteristics of glass fiber reinforced composites (GRFC). They control the damping behavior of composite structures and are also an ideal tool for monitoring the development of GFRC's mechanical properties during their processing or service. One of the most used tests is the vibration damping. In this work, the measurement consisted of recording the vibration decay of a rectangular plate excited by a controlled mechanism to identify the elastic and damping properties of the material under test. The frequency amplitude were measured by accelerometers and calculated by using a digital method. The present studies have been performed to explore relations between the dynamic mechanical properties, damping test and the influence of high moisture concentration of glass fiber reinforced composites (plain weave). The results show that the E' decreased with the increase in the exposed time for glass fiber/epoxy composites specimens exposed at 80 degrees C and 90% RH. The E' values found were: 26.7, 26.7, 25.4, 24.7 and 24.7 GPa for 0, 15, 30, 45 and 60 days of exposure, respectively. (c) 2005 Springer Science + Business Media, Inc.
Resumo:
The environmental factors, such as humidity and temperature, can limit the applications of composites by deteriorating the mechanical properties over a period of time. Environmental factors play an important role during the manufacture step and during composite's life cycle. The degradation of composites due to environmental effects is mainly caused by chemical and/or physical damages in the polymer matrix, loss of adhesion at the fiber/matrix interface, and/or reduction of fiber strength and stiffness. Composite's degradation can be measure by shear tests because shear failure is a matrix dominated property. In this work, the influence of moisture in shear properties of carbon fiber/epoxy composites ( laminates [0/0](s) and [0/90](s)) have been investigated. The interlaminar shear strength (ILSS) was measured by using the short beam shear test, and Iosipescu shear strength and modulus (G(12)) have been determinated by using the Iosipescu test. Results for laminates [0/0](s) and [0/90](s), after hygrothermal conditioning, exhibited a reduction of 21% and 18% on the interlaminar shear strenght, respectively, when compared to the unconditioned samples. Shear modulus follows the same trend. A reduction of 14.1 and 17.6% was found for [0/0](s) and [0/90](s), respectively, when compared to the unconditioned samples. Microstructural observations of the fracture surfaces by optical and scanning electron microscopies showed typical damage mechanisms for laminates [0/0](s) and [0/90](s).
Resumo:
Continuous fiber/metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent fatigue endurance and low density. Glass fibers/epoxy laminae and aluminum foil (Glare) are commonly used to obtain these hybrid composites. The environmental factors can limit the applications of composites by deteriorating the mechanical properties during service. Usually, epoxy resins absorb moisture when exposed to humid environments and metals are prone to surface corrosion. Therefore, the combination of the two materials in Glare (polymeric composite and metal). can lead to differences that often turn out to be beneficial in terms of mechanical properties and resistance to environmental influences. In this work. The viscoelastic properties. such as storage modulus (E') and loss modulus (E'), were obtained for glass fiber/epoxy composite, aluminum 2024-T3 alloy and for a glass fiber/epoxy/aluminum laminate (Glare). It was found that the glass fiber/epoxy (G/E) composites decrease the E' modulus during hygrothermal conditioning up to saturation point (6 weeks). However, for Glare laminates the E' modulus remains unchanged (49GPa) during the cycle of hygrothermal conditioning. The outer aluminum sheets in the Glare laminate shield the G/E composite laminae from moisture absorption. which in turn prevent, in a certain extent, the material from hygrothermal degradation effects. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The non-ohmic and dielectric properties as well as the dependence on the microstructural features of CaCu(3)Ti(4)O(12)/CaTiO(3) ceramic composites obtained by conventional and microwave sintering were investigated. It was demonstrated that the non-ohmic and dielectric properties depend strongly on the sintering conditions. It was found that the non-linear coefficient reaches values of 65 for microwave-sintered samples and 42 for samples sintered in a conventional furnace when a current density interval of 1-10 mA cm(-2) is considered. The non-linear coefficient value of 65 is equivalent to 1500 for samples sintered in the microwave if a current interval of 5-30 mA is considered as is shortly discussed by Chung et al (2004 Nature Mater. 3 774). Due to a high non-linear coefficient and a low leakage current (90 mu A) under both processing conditions, these samples are promising for varistor applications. The conventionally sintered samples exhibit a higher relative dielectric constant at 1 kHz (2960) compared with the samples sintered in the microwave furnace (2100). At high frequencies, the dielectric constant is also larger in the samples sintered in the conventional furnace. Depending on the application, one or another synthesis methodology is recommended, that is, for varistor applications sintered in a microwave furnace and for dielectric application sintered in a conventional furnace.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The continuous use of structural polymer composites in aeronautical industry has required the development of repairing techniques of damages found in different types of laminates. The most usually adopted procedure to investigate the repair of composite laminates has been by repairing damages simulated in laminated composite specimens. This work shows the influence of structural repair technique on mechanical properties of a typical carbon fiber/epoxy laminate used in aerospace industry. When analyzed by tensile test, the laminates with and without repair present tensile strength values of 670 and 892 MPa, respectively, and tensile modulus of 53.0 and 67.2 GPa, respectively. By this result, it is possible to observe a decrease of the measured mechanical properties of the repaired composites. When submitted to fatigue test, it is observed that in loads higher than 250 MPa, this laminate presents a low life cycle (lower than 400,000 cycles). The fatigue performance of both laminates is comparable, but the non-repaired laminate presented higher tensile and fatigue resistance when compared with the repaired laminate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The use of natural fibers as reinforcement in polymeric composites for technical applications has been a research subject of scientists during the last decade. There is a great interest in the application of sisal fiber as substitutes for glass fibers, motivated by potential advantages of weight saving, lower raw material price, and ecological advantages of using green resources which are renewable and biodegradable.Castor oil, a triglyceride vegetable that has hydroxyl groups, was reacted with 4,4' diphenylmethane diisocyanate (MDI) to produce the polyurethane matrix. Woven sisal fibers were used untreated and thermal treated at 60 C for 72h, and the composites were processed by compression molding.The present work study tensile behavior at four composites: dry sisal/polyurethane, humid sisal/polyurethane, dry sisal/phenolic and humid sisal/phenolic resin. The moisture content influences of sisal fibers on the mechanical behaviors were analyzed.Experimental results showed a higher tensile strength for the sisal/phenolic composites followed by sisal/polyurethane, respectively. In this research, sisal composites were also characterized by scanning electron microscopy. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICM11