962 resultados para INJURY-INDUCED HYPERTENSION
Resumo:
To investigate whether respiratory acidosis modulates ventilator-induced lung injury (VILI), we perfused (constant flow) 21 isolated sets of normal rabbit lungs, ventilated them for 20 min (pressure controlled ventilation [PCV] = 15 cm H(2)O) (Baseline) with an inspired CO(2) fraction adjusted for the partial pressure of CO(2) in the perfusate (PCO(2) approximately equal to 40 mm Hg), and then randomized them into three groups. Group A (control: n = 7) was ventilated with PCV = 15 cm H(2)O for three consecutive 20-min periods (T1, T2, T3). In Group B (high PCV/normocapnia; n = 7), PCV was given at 20 (T1), 25 (T2), and 30 (T3) cm H(2)O. The targeted PCO(2) was 40 mm Hg in Groups A and B. Group C (high PCV/hypercapnia; n = 7) was ventilated in the same way as Group B, but the targeted PCO(2) was approximately equal to 70 to 100 mm Hg. The changes (from Baseline to T3) in weight gain (Delta WG: g) and in the ultrafiltration coefficient (Delta K(f) = gr/min/ cm H(2)O/100g) and the protein and hemoglobin concentrations in bronchoalveolar lavage fluid (BALF) were used to assess injury. Group B experienced a significantly greater Delta WG (14.85 +/- 5.49 [mean +/- SEM] g) and Delta K(f) (1.40 +/- 0.49 g/min/cm H(2)O/100 g) than did either Group A (Delta WG = 0.70 +/- 0.43; Delta K(f) = 0.01 +/- 0.03) or Group C (Delta WG = 5.27 +/- 2.03 g; Delta K(f) = 0.25 +/- 0.12 g/min/cm H(2)O/ 100 g). BALF protein and hemoglobin concentrations (g/L) were higher in Group B (11.98 +/- 3.78 g/L and 1.82 +/- 0.40 g/L, respectively) than in Group A (2.92 +/- 0.75 g/L and 0.38 +/- 0.15 g/L) or Group C (5.71 +/- 1.88 g/L and 1.19 +/- 0.32 g/L). We conclude that respiratory acidosis decreases the severity of VILI in this model.
Resumo:
Experimental evidence demonstrates that therapeutic temperature modulation with the use of mild induced hypothermia (MIH, defined as the maintenance of body temperature at 32-35 °C) exerts significant neuroprotection and attenuates secondary cerebral insults after traumatic brain injury (TBI). In adult TBI patients, MIH has been used during the acute "early" phase as prophylactic neuroprotectant and in the sub-acute "late" phase to control brain edema. When used to control brain edema, MIH is effective in reducing elevated intracranial pressure (ICP), and is a valid therapy of refractory intracranial hypertension in TBI patients. Based on the available evidence, we recommend: applying standardized algorithms for the management of induced cooling; paying attention to limit potential side effects (shivering, infections, electrolyte disorders, arrhythmias, reduced cardiac output); and using controlled, slow (0.1-0.2 °C/h) rewarming, to avoid rebound ICP. The optimal temperature target should be titrated to maintain ICP <20 mmHg and to avoid temperatures <35 °C. The duration of cooling should be individualized until the resolution of brain edema, and may be longer than 48 h. Patients with refractory elevated ICP following focal TBI (e.g. hemorrhagic contusions) may respond better to MIH than those with diffuse injury. Randomized controlled trials are underway to evaluate the impact of MIH on neurological outcome in adult TBI patients with elevated ICP. The use of MIH as prophylactic neuroprotectant in the early phase of adult TBI is not supported by clinical evidence and is not recommended.
Resumo:
Rrésumé: La première description dans une publication médicale des douleurs neuropathiques remonte à 1872, le Dr S.W. Mitchell les résumant ainsi [...]" la causalgie est la plus terrible des tortures qu'une lésion nerveuse puisse entraîner "[...]. Par définition, la douleur neuropathique est une douleur chronique faisant suite à une lésion ou dysfonction du système nerveux. Malgré les progrès faits dans la compréhension de ce syndrome, le détail des mécanismes impliqués nous échappe encore et son traitement reste insuffisant car moins de 50% des patients sont soulagés par les thérapies actuelles. Différents modèles expérimentaux ont été élaborés chez l'animal de laboratoire, en particulier des modèles de lésion de nerfs périphériques chez le rat, permettant des investigations tant moléculaires que fonctionnelles des mécanismes impliqués dans le développement de ces douleurs. En revanche, peu de modèles existent chez la souris, alors que cet animal, grâce à la transgénèse, est très fréquemment utilisé pour l'approche fonctionnelle ciblée sur un gène. Dans l'étude présentée ici, nous avons évalué chez la souris C57BL/6 l'adaptation d'un modèle neuropathique, proposé une nouvelle modalité de mesure de la sensibilité douloureuse adaptée à la souris et défini une méthode d'analyse performante des résultats. Ce modèle, dit de lésion avec épargne nerveuse (spared Werve injury, SNI), consiste en la lésion de deux des trois branches du nerf sciatique, soit les nerfs peronier commun et tibial. La troisième branche, le nerf sural est laissé intact et c'est dans le territoire cutané de ce dernier que la sensibilité douloureuse à des stimulations mécaniques est enregistrée. Des filaments calibrés de force croissante sont appliqués sur la surface de la patte impliquée et la fréquence relative de retrait de la patte a été modélisée mathématiquement et analysée par un modèle statistique intégrant tous les paramètres de l'expérience (mixed-effects model). Des variantes chirurgicales lésant séquentiellement les trois branches du nerf sciatique ainsi que la réponse en fonction du sexe de l'animal ont également été évaluées. La lésion SNI entraîne une hypersensibilité mécanique marquée comparativement aux souris avec chirurgie contrôle; cet effet est constant entre les animaux et persiste durant les quatre semaines de l'étude. De subtiles différences entre les variables, y compris une divergence de sensibilité mécanique entre les sexes, ont été démontrées. La nécessité de léser le nerf tibial pour le développement des symptômes a également été documentée par notre méthode d'évaluation et d'analyse. En conclusion, nous avons validé le modèle SNI chez la souris par l'apparition d'un symptôme reproductible et apparenté à l'allodynie mécanique décrite par les patients souffrant de douleurs neuropathiques. Nous avons développé des méthodes d'enregistrement et d'analyse de la sensibilité douloureuse sensibles qui permettent la mise en évidence de facteurs intrinsèques et extrinsèques de variation de la réponse. Le modèle SNI utilisé chez des souris génétiquement modifiées, de par sa précision et reproductibilité, pourra permettre la discrimination de facteurs génétiques et épigénétiques contribuant au développement et à la persistance de douleurs neuropathiques.
Resumo:
BACKGROUND: The impact of osmotic therapies on brain oxygen has not been extensively studied in humans. We examined the effects on brain tissue oxygen tension (PbtO(2)) of mannitol and hypertonic saline (HTS) in patients with severe traumatic brain injury (TBI) and refractory intracranial hypertension. METHODS: 12 consecutive patients with severe TBI who underwent intracranial pressure (ICP) and PbtO(2) monitoring were studied. Patients were treated with mannitol (25%, 0.75 g/kg) for episodes of elevated ICP (>20 mm Hg) or HTS (7.5%, 250 ml) if ICP was not controlled with mannitol. PbtO(2), ICP, mean arterial pressure, cerebral perfusion pressure (CPP), central venous pressure and cardiac output were monitored continuously. RESULTS: 42 episodes of intracranial hypertension, treated with mannitol (n = 28 boluses) or HTS (n = 14 boluses), were analysed. HTS treatment was associated with an increase in PbtO(2) (from baseline 28.3 (13.8) mm Hg to 34.9 (18.2) mm Hg at 30 min, 37.0 (17.6) mm Hg at 60 min and 41.4 (17.7) mm Hg at 120 min; all p<0.01) while mannitol did not affect PbtO(2) (baseline 30.4 (11.4) vs 28.7 (13.5) vs 28.4 (10.6) vs 27.5 (9.9) mm Hg; all p>0.1). Compared with mannitol, HTS was associated with lower ICP and higher CPP and cardiac output. CONCLUSIONS: In patients with severe TBI and elevated ICP refractory to previous mannitol treatment, 7.5% hypertonic saline administered as second tier therapy is associated with a significant increase in brain oxygenation, and improved cerebral and systemic haemodynamics.
Resumo:
INTRODUCTION Clearance of alveolar oedema depends on active transport of sodium across the alveolar-epithelial barrier. beta-Adrenergic agonists increase clearance of pulmonary oedema, but it has not been established whether beta-agonist stimulation achieves sufficient oedema clearance to improve survival in animals. The objective of this study was to determine whether the increased pulmonary oedema clearance produced by intratracheal dopamine improves the survival of rats after mechanical ventilation with high tidal volume (HVT). METHODS This was a randomized, controlled, experimental study. One hundred and thirty-two Wistar-Kyoto rats, weighing 250 to 300 g, were anaesthetized and cannulated via endotracheal tube. Pulmonary oedema was induced by endotracheal instillation of saline solution and mechanical ventilation with HVT. Two types of experiment were carried out. The first was an analysis of pulmonary oedema conducted in six groups of 10 rats ventilated with low (8 ml/kg) or high (25 ml/kg) tidal volume for 30 or 60 minutes with or without intratracheally instilled dopamine. At the end of the experiment the animals were exsanguinated and pulmonary oedema analysis performed. The second experiment was a survival analysis, which was conducted in two groups of 36 animals ventilated with HVT for 60 minutes with or without intratracheal dopamine; survival of the animals was monitored for up to 7 days after extubation. RESULTS In animals ventilated at HVT with or without intratracheal dopamine, oxygen saturation deteriorated over time and was significantly higher at 30 minutes than at 60 minutes. After 60 minutes, a lower wet weight/dry weight ratio was observed in rats ventilated with HVT and instilled with dopamine than in rats ventilated with HVT without dopamine (3.9 +/- 0.27 versus 4.9 +/- 0.29; P = 0.014). Survival was significantly (P = 0.013) higher in animals receiving intratracheal dopamine and ventilated with HVT, especially at 15 minutes after extubation, when 11 of the 36 animals in the HVT group had died as compared with only one out of the 36 animals in the HVT plus dopamine group. CONCLUSION Intratracheal dopamine instillation increased pulmonary oedema clearance in rats ventilated with HVT, and this greater clearance was associated with improved survival.
Resumo:
Despite stringent requirements for drug development imposed by regulatory agencies, drug-induced liver injury (DILI) is an increasing health problem and a significant cause for failure to approve drugs, market withdrawal of commercialized medications, and adoption of regulatory measures. The pathogenesis is yet undefined, though the rare occurrence of idiosyncratic DILI (1/100,000–1/10,000) and the fact that hepatotoxicity often recurs after re-exposure to the culprit drug under different environmental conditions strongly points toward a major role for genetic variations in the underlying mechanism and susceptibility. Pharmacogenetic studies in DILI have to a large extent focused on genes involved in drug metabolism, as polymorphisms in these genes may generate increased plasma drug concentrations as well as lower clearance rates when treated with standard medication doses. A range of studies have identified a number of genetic variants in drug metabolism Phase I, II, and III genes, including cytochrome P450 (CYP) 2E1, N-acetyltransferase 2, UDP-glucuronosyltransferase 2B7, glutathione S-transferase M1/T1, ABCB11, and ABCC2, that enhance DILI susceptibility (Andrade et al., 2009; Agundez et al., 2011). Several metabolic gene variants, such as CYP2E1c1 and NAT2 slow, have been associated with DILI induced by specific drugs based on individual drug metabolism information. Others, such as GSTM1 and T1 null alleles have been associated with enhanced risk of DILI development induced by a large range of drugs. Hence, these variants appear to have a more general role in DILI susceptibility due to their role in reducing the cell's antioxidative capacity (Lucena et al., 2008). Mitochondrial superoxide dismutase (SOD2) and glutathione peroxidase 1 (GPX1) are two additional enzymes involved in combating oxidative stress, with specific genetic variants shown to enhance the risk of developing DILI
Resumo:
Distinguishing drug-induced liver injury (DILI) from idiopathic autoimmune hepatitis (AIH) can be challenging. We performed a standardized histologic evaluation to explore potential hallmarks to differentiate AIH versus DILI. Biopsies from patients with clinically well-characterized DILI [n = 35, including 19 hepatocellular injury (HC) and 16 cholestatic/mixed injury (CS)] and AIH (n = 28) were evaluated for Ishak scores, prominent inflammatory cell types in portal and intra-acinar areas, the presence or absence of emperipolesis, rosette formation, and cholestasis in a blinded fashion by four experienced hepatopathologists. Histologic diagnosis was concordant with clinical diagnosis in 65% of cases; but agreement on final diagnosis among the four pathologists was complete in only 46% of cases. Interface hepatitis, focal necrosis, and portal inflammation were present in all evaluated cases, but were more severe in AIH (P < 0.05) than DILI (HC). Portal and intra-acinar plasma cells, rosette formation, and emperiopolesis were features that favored AIH (P < 0.02). A model combining portal inflammation, portal plasma cells, intra-acinar lymphocytes and eosinophils, rosette formation, and canalicular cholestasis yielded an area under the receiver operating characteristic curve (AUROC) of 0.90 in predicting DILI (HC) versus AIH. All Ishak inflammation scores were more severe in AIH than DILI (CS) (P ≤ 0.05). The four AIH-favoring features listed above were consistently more prevalent in AIH, whereas portal neutrophils and intracellular (hepatocellular) cholestasis were more prevalent in DILI (CS) (P < 0.02). The combination of portal inflammation, fibrosis, portal neutrophils and plasma cells, and intracellular (hepatocellular) cholestasis yielded an AUC of 0.91 in predicting DILI (CS) versus AIH. Conclusion: Although an overlap of histologic findings exists for AIH and DILI, sufficient differences exist so that pathologists can use the pattern of injury to suggest the correct diagnosis.
Resumo:
BACKGROUND & AIMS Hy's Law, which states that hepatocellular drug-induced liver injury (DILI) with jaundice indicates a serious reaction, is used widely to determine risk for acute liver failure (ALF). We aimed to optimize the definition of Hy's Law and to develop a model for predicting ALF in patients with DILI. METHODS We collected data from 771 patients with DILI (805 episodes) from the Spanish DILI registry, from April 1994 through August 2012. We analyzed data collected at DILI recognition and at the time of peak levels of alanine aminotransferase (ALT) and total bilirubin (TBL). RESULTS Of the 771 patients with DILI, 32 developed ALF. Hepatocellular injury, female sex, high levels of TBL, and a high ratio of aspartate aminotransferase (AST):ALT were independent risk factors for ALF. We compared 3 ways to use Hy's Law to predict which patients would develop ALF; all included TBL greater than 2-fold the upper limit of normal (×ULN) and either ALT level greater than 3 × ULN, a ratio (R) value (ALT × ULN/alkaline phosphatase × ULN) of 5 or greater, or a new ratio (nR) value (ALT or AST, whichever produced the highest ×ULN/ alkaline phosphatase × ULN value) of 5 or greater. At recognition of DILI, the R- and nR-based models identified patients who developed ALF with 67% and 63% specificity, respectively, whereas use of only ALT level identified them with 44% specificity. However, the level of ALT and the nR model each identified patients who developed ALF with 90% sensitivity, whereas the R criteria identified them with 83% sensitivity. An equal number of patients who did and did not develop ALF had alkaline phosphatase levels greater than 2 × ULN. An algorithm based on AST level greater than 17.3 × ULN, TBL greater than 6.6 × ULN, and AST:ALT greater than 1.5 identified patients who developed ALF with 82% specificity and 80% sensitivity. CONCLUSIONS When applied at DILI recognition, the nR criteria for Hy's Law provides the best balance of sensitivity and specificity whereas our new composite algorithm provides additional specificity in predicting the ultimate development of ALF.
Resumo:
Nitric oxide (NO) plays a major role in the regulation of cardiovascular and metabolic homeostasis, as evidenced by insulin resistance and arterial hypertension in endothelial NO synthase (eNOS) null mice. Extrapolation of these findings to humans is difficult, however, because eNOS gene deficiency has not been reported. eNOS gene polymorphism and impaired NO synthesis, however, have been reported in several cardiovascular disease states and could predispose to insulin resistance. High-fat diet induces insulin resistance and arterial hypertension in normal mice. To test whether partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension during metabolic stress, we examined effects of an 8-week high-fat diet on insulin sensitivity (euglycemic clamp) and arterial pressure in eNOS(+/-) mice. When fed a normal diet, these mice had normal insulin sensitivity and were normotensive. When fed a high-fat diet, however, eNOS(+/-) mice developed exaggerated arterial hypertension and had fasting hyperinsulinemia and a 35% lower insulin-stimulated glucose utilization than control mice. The partial deletion of the eNOS gene does not alter insulin sensitivity or blood pressure in mice. When challenged with nutritional stress, however, partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension, providing further evidence for the importance of this gene in linking metabolic and cardiovascular disease.
Resumo:
OBJECTIVES: The aim of this study was to evaluate right ventricular (RV) and left ventricular function and pulmonary circulation in chronic mountain sickness (CMS) patients with rest and stress echocardiography compared with healthy high-altitude (HA) dwellers. BACKGROUND: CMS or Monge's disease is defined by excessive erythrocytosis (hemoglobin >21 g/dl in males, 19 g/dl in females) and severe hypoxemia. In some cases, a moderate or severe increase in pulmonary pressure is present, suggesting a similar pathogenesis of pulmonary hypertension. METHODS: In La Paz (Bolivia, 3,600 m sea level), 46 CMS patients and 40 HA dwellers of similar age were evaluated at rest and during semisupine bicycle exercise. Pulmonary artery pressure (PAP), pulmonary vascular resistance, and cardiac function were estimated by Doppler echocardiography. RESULTS: Compared with HA dwellers, CMS patients showed RV dilation at rest (RV mid diameter: 36 ± 5 mm vs. 32 ± 4 mm, CMS vs. HA, p = 0.001) and reduced RV fractional area change both at rest (35 ± 9% vs. 43 ± 9%, p = 0.002) and during exercise (36 ± 9% vs. 43 ± 8%, CMS vs. HA, p = 0.005). The RV systolic longitudinal function (RV-S') decreased in CMS patients, whereas it increased in the control patients (p < 0.0001) at peak stress. The RV end-systolic pressure-area relationship, a load independent surrogate of RV contractility, was similar in CMS patients and HA dwellers with a significant increase in systolic PAP and pulmonary vascular resistance in CMS patients (systolic PAP: 50 ± 12 mm Hg vs. 38 ± 8 mm Hg, CMS vs. HA, p < 0.0001; pulmonary vascular resistance: 2.9 ± 1 mm Hg/min/l vs. 2.2 ± 1 mm Hg/min/l, p = 0.03). Both groups showed comparable systolic and diastolic left ventricular function both at rest and during stress. CONCLUSIONS: Comparable RV contractile reserve in CMS and HA suggests that the lower resting values of RV function in CMS may represent a physiological adaptation to chronic hypoxic conditions rather than impaired RV function. (Chronic Mountain Sickness, Systemic Vascular Function [CMS]; NCT01182792).
Resumo:
BACKGROUND: Pulmonary vascular diseases are increasingly recognised as important clinical conditions. Pulmonary hypertension associated with a range of aetiologies is difficult to treat and associated with progressive morbidity and mortality. Current therapies for pulmonary hypertension include phosphodiesterase type 5 inhibitors, endothelin receptor antagonists, or prostacyclin mimetics. However, none of these provide a cure and the clinical benefits of these drugs individually decline over time. There is, therefore, an urgent need to identify new treatment strategies for pulmonary hypertension. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that the PPARbeta/delta agonist GW0742 induces vasorelaxation in systemic and pulmonary vessels. Using tissue from genetically modified mice, we show that the dilator effects of GW0742 are independent of the target receptor PPARbeta/delta or cell surface prostacyclin (IP) receptors. In aortic tissue, vascular relaxant effects of GW0742 were not associated with increases in cGMP, cAMP or hyperpolarisation, but were attributed to inhibition of RhoA activity. In a rat model of hypoxia-induced pulmonary hypertension, daily oral dosing of animals with GW0742 (30 mg/kg) for 3 weeks significantly reduced the associated right heart hypertrophy and right ventricular systolic pressure. GW0742 had no effect on vascular remodelling induced by hypoxia in this model. CONCLUSIONS/SIGNIFICANCE: These observations are the first to show a therapeutic benefit of 'PPARbeta/delta' agonists in experimental pulmonary arterial hypertension and provide pre-clinical evidence to favour clinical trials in man.
Resumo:
OBJECTIVE: Although intracranial hypertension is one of the important prognostic factors after head injury, increased intracranial pressure (ICP) may also be observed in patients with favourable outcome. We have studied whether the value of ICP monitoring can be augmented by indices describing cerebrovascular pressure-reactivity and pressure-volume compensatory reserve derived from ICP and arterial blood pressure (ABP) waveforms. METHOD: 96 patients with intracranial hypertension were studied retrospectively: 57 with fatal outcome and 39 with favourable outcome. ABP and ICP waveforms were recorded. Indices of cerebrovascular reactivity (PRx) and cerebrospinal compensatory reserve (RAP) were calculated as moving correlation coefficients between slow waves of ABP and ICP, and between slow waves of ICP pulse amplitude and mean ICP, respectively. The magnitude of 'slow waves' was derived using ICP low-pass spectral filtration. RESULTS: The most significant difference was found in the magnitude of slow waves that was persistently higher in patients with a favourable outcome (p<0.00004). In patients who died ICP was significantly higher (p<0.0001) and cerebrovascular pressure-reactivity (described by PRx) was compromised (p<0.024). In the same patients, pressure-volume compensatory reserve showed a gradual deterioration over time with a sudden drop of RAP when ICP started to rise, suggesting an overlapping disruption of the vasomotor response. CONCLUSION: Indices derived from ICP waveform analysis can be helpful for the interpretation of progressive intracranial hypertension in patients after brain trauma.
Resumo:
Background: Chronic mountain sickness (CMS) is characterized by exaggerated exercise-induced pulmonary hypertension. Evidences suggests that exercise may cause lung fluid accumulation at high altitude. We hypothesized that, in patients with CMS, exercise causes lung fluid accumulation.Methods: In 21 male CMS patients and 20 matched healthy controls born and permanently living in La Paz (Bolivia, 3600m) we assessed with echocardiogram, pulmonary artery pressure (PASP), right and left ventricular function and ultrasoundlung comets (ULCs, a marker of lung fluid accumulation) at rest and during mild bicycle exercise (10 min at 50W).Results: CMS patients presented a more than 2-fold greater exercise-induced increase in pulmonary artery pressure than controls (17.1±8.3 vs 7.2±7.9 mmHg, P=0.003). This exaggerated PASP response to exercise was associated with a roughly 3-fold greater increase in UCLs in patients with CMS than in controls (6.3±5.1 vs. 2.1±5.3, p<0.05), and there existed a significant relationship between PASP and UCLs (r=0.44, p<0.001). Finally, TDI on lateral tricuspid annulus decreased during exercise in patients with CMS (from 13.2±3.2 to 11.5±2.1 cm s-1, p=0.03), but increased in controls (from 13.1±2.9 to 14.9±2.6 cm s-1 , p=0.04). Left ventricular function remained unaltered in the 2 groups.Conclusions: we provide the first direct evidence in CMS patients that exaggerated exercise-induced pulmonary hypertension causes rapid lung fluid accumulation and right ventricular dysfunction. We speculate that in patients with CMS these two phenomena contribute to reduced exercise performances and Figure 1 increased cardiovascular morbidity and mortality that characterise these subjects.