928 resultados para IMMUNOLOGICAL-TOLERANCE
Resumo:
The azole antifungal fluconazole possesses only fungistatic activity in Candida albicans and, therefore, this human pathogen is tolerant to this agent. However, tolerance to fluconazole can be inhibited when C. albicans is exposed to fluconazole combined with the immunosuppressive drug cyclosporin A, which is known to inhibit calcineurin activity in yeast. A mutant lacking both alleles of a gene encoding the calcineurin A subunit (CNA) lost viability in the presence of fluconazole, thus making calcineurin essential for fluconazole tolerance. Consistent with this observation, tolerance to fluconazole was modulated by calcium ions or by the expression of a calcineurin A derivative autoactivated by the removal of its C-terminal inhibitory domain. Interestingly, CNA was also essential for tolerance to other antifungal agents (voriconazole, itraconazole, terbinafine, amorolfine) and to several other metabolic inhibitors (caffeine, brefeldin A, mycophenolic acid, fluphenazine) or cell wall-perturbing agents (SDS, calcofluor white, Congo red), thus indicating that the calcineurin pathway plays an important role in the survival of C. albicans in the presence of external growth inhibitors. Several genes, including PMC1, a vacuolar calcium P-type ATPase, were regulated in a calcineurin- and fluconazole-dependent manner. However, PMC1 did not play a direct role in the survival of C. albicans when exposed to fluconazole. In addition to these different properties, calcineurin was found to affect colony morphology in several media known to modulate the C. albicans dimorphic switch. In particular, calcineurin was found to be essential for C. albicans viability in serum-containing media. Finally, calcineurin was found to be necessary for the virulence of C. albicans in a mice model of infection, thus making calcineurin an important element for adequate adaptation to the conditions of the host environment.
Resumo:
Hepatitis B virus (HBV) infection is a major cause of morbidity and mortality in human immunodeficiency virus (HIV)-infected patients worldwide. It is unclear whether HIV-related outcomes are affected by HBV coinfection. We compared virological suppression and immunological recovery during antiretroviral therapy (ART) of patients of different HBV serological status in the Swiss HIV Cohort Study. CD4 cell recovery during ART was significantly impaired in hepatitis B surface antigen-positive patients and in those with anti-hepatitis B core antigen alone compared with HBV-uninfected patients, despite similar virological efficacy of ART. CD4 increase in patients with resolved HBV infection was similar to that in HBV-uninfected individuals.
Resumo:
Thymic negative selection renders the developing T-cell repertoire tolerant to self-major histocompatability complex (MHC)/peptide ligands. The major mechanism of induction of self-tolerance is thought to be thymic clonal deletion, ie, the induction of apoptotic cell death in thymocytes expressing a self-reactive T-cell receptor. Consistent with this hypothesis, in mice deficient in thymic clonal deletion mediated by cells of hematopoietic origin, a twofold to threefold increased generation of mature thymocytes has been observed. Here we describe the analysis of the specificity of T lymphocytes developing in the absence of clonal deletion mediated by hematopoietic cells. In vitro, targets expressing syngeneic MHC were readily lysed by activated CD8(+) T cells from deletion-deficient mice. However, proliferative responses of T cells from these mice on activation with syngeneic antigen presenting cells were rather poor. In vivo, deletion-deficient T cells were incapable of induction of lethal graft-versus-host disease in syngeneic hosts. These data indicate that in the absence of thymic deletion mediated by hematopoietic cells functional T-cell tolerance can be induced by nonhematopoietic cells in the thymus. Moreover, our results emphasize the redundancy in thymic negative selection mechanisms.
Resumo:
The current literature on the role of interleukin (IL)-2 in memory CD8(+) T-cell differentiation indicates a significant contribution of IL-2 during primary and also secondary expansion of CD8(+) T cells. IL-2 seems to be responsible for optimal expansion and generation of effector functions following primary antigenic challenge. As the magnitude of T-cell expansion determines the numbers of memory CD8(+) T cells surviving after pathogen elimination, these events influence memory cell generation. Moreover, during the contraction phase of an immune response where most antigen-specific CD8(+) T cells disappear by apoptosis, IL-2 signals are able to rescue CD8(+) T cells from cell death and provide a durable increase in memory CD8(+) T-cell counts. At the memory stage, CD8(+) T-cell frequencies can be boosted by administration of exogenous IL-2. Significantly, only CD8(+) T cells that have received IL-2 signals during initial priming are able to mediate efficient secondary expansion following renewed antigenic challenge. Thus, IL-2 signals during different phases of an immune response are key in optimizing CD8(+) T-cell functions, thereby affecting both primary and secondary responses of these T cells.
Resumo:
A pure sensory neuropathy caused by lymphocytic infiltration of the dorsal root ganglia has been reported in a few patients with Sjögren's syndrome. The clinical, immunological, and electromyographic findings of five patients with this type of neuropathy and primary Sjögren's syndrome were reviewed. Typical clinical indications were the presence of a chronic asymmetrical sensory deficit, initial disease in the hands with a predominant loss of the vibratory and joint position senses, and an association with Adie's pupil syndrome or trigeminal sensory neuropathy. The simultaneous impairment of the central and peripheral evoked cortical potentials suggested that there was a lesion of the neuronal cell body. The neuropathy preceded the diagnosis of Sjögren's syndrome in four patients. Four patients were positive for Ro antibodies, but systemic vasculitis or malignancy was not found after a mean follow up of six years. These findings indicate that in patients with a sensory neuropathy the diagnosis of Sjögren's syndrome has to be considered, even if the patient denies the presence of sicca symptoms, and that appropriate tests must be carried out.
Resumo:
In this paper we explore the possibility of improving, by genetic engineering, the resistance of insulin-secreting cells to the metabolic and inflammatory stresses that are anticipated to limit their function and survival when encapsulated and transplanted in a type 1 diabetic environment. We show that transfer of the Bcl-2 antiapoptotic gene, and of genes specifically interfering with cytokine intracellular signaling pathways, greatly improves resistance of the cells to metabolic limitations and inflammatory stresses.
Resumo:
Abstract The main thesis topic relates to the 'molecular mechanisms of penicillin-induced bacterial death. Indeed, bacteria have developed two principal mechanisms to escape the killing effect of ß-lactam antibiotics: resistance and tolerance. Resistant bacteria are characterized by their ability to grow in the presence of drug concentrations higher than the one inhibiting the growth of susceptible members of the same species. Hence, resistant bacteria have an increased minimal inhibitory concentration (MIC) of the drug. Nevertheless, when exposed to antibiotic concentrations exceeding their new MIC, resistant bacteria remain sensitive to the antibiotic killing effect. In contrast, tolerant bacteria have an unchanged MIC. However, they have a considerably increased ability to survive drug-induced killing, even at concentrations exceeding their MIC by several orders of magnitude. In other words, in the presence of the antibiotic, tolerant bacteria become persister cells which stop growing but are not killed. In the present thesis, it is shown that the survival phenotype of a tolerant Streptococcus gordonii strain depends on two components belonging to sugar metabolism pathways. First, the transcription factor CcpA which mediates a global regulatory mechanism allowing bacteria to utilize the most efficient sugar source for their growth. We show that the inactivation of the ccpA gene leads to a partial loss of penicillin tolerance both in vitro and in a rat model of experimental endocarditis. Second, the Enzyme I of the phosphotransferase system which is involved in the uptake and phosphorylation of sugars. Here, we -show that a single nucleotide mutation in ptsI, the gene encoding the Enzyme I, is sufficient to confer a fully tolerant phenotype in S. gordonii both in vivo and in vivo. The mutation results in a radical proline to arginine substitution in the C-terminal domain of the protein, probably leading to a decrease in its homodimerization and subsequent activity. Taken together our results prove that tolerance is a global survival mechanism linked to sugar metabolism. We hypothesize that, in the presence of the antibiotic, the already altered metabolic processes of the tolerant strain are completely inactivated. Hence, bacteria may enter in a dormant state and become insensitive to the bactericidal effect of ß-lactams, which depends on actively dividing cells. This thesis manuscript also contains two other side-projects. The first one establishes that the ability to form a biofilm is not a requisite for the successful establishment of endocarditis due to S. gordonii. The second one characterizes the S. gordonii a-phosphoglucomutase gene, and shows that its inactivation results in a loss of in vitro fitness and in vivo virulence. Résumé Le sujet principal de cette thèse concerne les mécanismes moléculaires de la mort bactérienne induite par la pénicilline. En effet, les bactéries ont développé deux mécanismes principaux pour échapper à l'effet bactéricide des ß-lactamines : la résistance et la tolérance. Les bactéries résistantes sont caractérisées par leur capacité de croître en présence de concentration d'antibiotiques plus élevées que celles inhibant la croissance des organismes sensibles de la même espèce. Les bactéries résistantes ont donc une augmentation de leur concentration minimale inhibitrice (CMI) à l'antibiotique. Néanmoins, quand elles sont exposées à des concentrations dépassant leur nouvelle CMI, elles restent sensibles à l'effet bactéricide. Au contraire, les bactéries tolérantes ont une CMI inchangée. Toutefois, elles ont une très importante capacité à survivre à l'effet bactéricide des ß-lactamines, ceci même à des concentrations excédant leur CMI de plusieurs ordres de grandeur. En d'autres termes, en présence de l'antibiotique, les bactéries tolérantes deviennent des cellules persistantes qui arrêtent leur croissance mais ne sont pas tuées. Dans la présente thèse, il est montré que le phénotype de survie d'un Streptococcus gordonii tolérant dépend de deux composants appartenant aux voies du métabolisme des sucres. Premièrement, le facteur de transcription CcpA qui contrôle un système global de régulation permettant à la bactérie d'utiliser les sources de sucre les plus efficaces pour sa croissance. Il est montré que l'inactivation du gène ccpA résulte en la perte partielle de la tolérance à la pénicilline aussi bien in vitro que dans un modèle d'endocardite expérimentale chez le rat. Deuxièmement, l'Enzyme I du système de phosphotransfert impliqué dans l'import et la phosphorylation des sucres. Nous montrons qu'une mutation ponctuelle d'un nucléotide dans ptsl, le gène codant pour l'Enzyme I, suffit à complètement conférer un phénotype tolérant chez S. gordonii aussi bien in vitro qu'in vivo. La mutation induit la substitution radicale d'une proline en une arginine dans le domaine C-terminal de la protéine, résultant probablement en une diminution de sa capacité d'homodimérisation et donc d'activité. Dans leur ensemble, nos résultats prouvent que la tolérance est un mécanisme global de survie lié au métabolisme des sucres. Nous présentons l'hypothèse que, en présence de l'antibiotique, les processus métaboliques déjà altérés de la souche tolérante deviennent complètement inactifs. En conséquence, les bactéries entreraient dans un état dormant nonréplicatif, devenant ainsi insensibles à l'effet bactéricide des ß-lactamines qui nécessite des cellules en cours de division active. Le manuscrit de cette thèse contient également deux projets secondaires. Le premier montre que la capacité de former un biofilm n'est pas un prérequis pour le succès de l'initiation de l'endocardite à S. gordonii. Le second caractérise le gène de l'a-phosphoglucomutase de S. gordonii et montre que son inactivation résulte en une perte de fitness in vitro et de virulence in vivo.
Resumo:
Certain autoimmune diseases as well as asthma have increased in recent decades, particularly in developed countries. The hygiene hypothesis has been the prevailing model to account for this increase; however, epidemiology studies also support the contribution of diet and obesity to inflammatory diseases. Diet affects the composition of the gut microbiota, and recent studies have identified various molecules and mechanisms that connect diet, the gut microbiota, and immune responses. Herein, we discuss the effects of microbial metabolites, such as short chain fatty acids, on epithelial integrity as well as immune cell function. We propose that dysbiosis contributes to compromised epithelial integrity and disrupted immune tolerance. In addition, dietary molecules affect the function of immune cells directly, particularly through lipid G-protein coupled receptors such as GPR43.
Resumo:
We have studied ischemic tolerance induced by the serine protease thrombin in two different models of experimental ischemia. In organotypic hippocampal slice cultures, we demonstrate that incubation with low doses of thrombin protects neurons against a subsequent severe oxygen and glucose deprivation. L-JNKI1, a highly specific c-jun N-terminal kinase (JNK) inhibitor, and a second specific JNK inhibitor, SP600125, prevented thrombin preconditioning (TPC). We also show that the exposure to thrombin increases the level of phosphorylated c-jun, the major substrate of JNK. TPC, in vivo, leads to significantly smaller lesion sizes after a 30-min middle cerebral artery occlusion (MCAo), and the preconditioned mice were better off in the three tests used to evaluate functional recovery. In accordance with in vitro results, TPC in vivo was prevented by administration of L-JNKI1, supporting a role for JNK in TPC. These results, from two different TPC models and with two distinct JNK inhibitors, show that JNK is likely to be involved in TPC.