979 resultados para Hysteresis of Suction
Resumo:
The magnetization process of Co/Al oxide/Py trilayers and its evolution with the temperature have been analyzed. The particular behavior of the Co layers, including the shift of the hysteresis loops and a coercivity increase with the decrease of temperature, is related with the apparition of a CoO layer at the Co/Al-oxide interface.
Resumo:
Introduction: In 2012, a study by K. Chatziioannidou and S-C. Renteria showed that teenagers chose to undergo a surgical termination of pregnancy (TOP) more often than a medical TOP (mifepristone followed by misoprostol) when they decided to terminate a pregnancy. It also showed that the teenagers' choice for a medical versus surgical method is inversely proportional to the adults' choice although the efficiency of the medical method showed even better results for teenagers than for adults. According to the hypothesis made, the reasons for this choice might be influenced by the following facts: (i) the belated call to make an appointment, the medical procedure not being available after 9 weeks of gestation; (ii) the imperative request for confidentiality; (iii) the beliefs and subjective appreciation of the medical staff. Objectives: The aim of this retrospective and qualitative study is to analyse the reasons why, in case of a TOP, teenagers chose the surgical method more often than their adult counterparts. Material: (i) All teenagers who were admitted for an abortive procedure during 2011 in the in- or outpatient ward. (ii) The professional team (midwives and sexual and reproductive counsellors) in charge in the case of a TOP request. Methods: The information about the patient's history and the biopsycho- social data was retrieved from the patient files filled out by midwives and sexual and reproductive health counsellors during the first appointment for a TOP request or during its process. The professionals' appreciation was evaluated by means of a semi-structured questionnaire. Results: Concerning the choice of the method for a pregnancy termination, the results of our research show that: (i) Out of 47 teenagers, 27 chose the surgical method and 17 the medical method. (ii) Three had a second trimester abortion (which includes use of the medical method). (iii) Fifteen teenagers out of the 27 who chose a surgical method consulted between the 9th and 14th weeks of amenorrhoea and therefore did not have any other choice. The reasons for their 'late arrival' will be explained in detail. The 12 teenagers who arrived before the 8th week of amenorrhoea and chose to undertake abortion by suction & curettage under general anaesthesia did it for the following reasons: (i) Four were afraid of bleeding and pain. (ii) Five thought that the organisation of the surgical procedure was easier. (iii) Two did not trust the abortion pill. (iv) One was taken to her mother's gynaecologist where she had a D&C. Confidentiality was requested nine times out of 27 when choosing the surgical method, and six times out of 17 when choosing the medical method. Therefore, although confidentiality concerns a third of the teenagers' pregnancy termination requests, it does not seem to be a significant element for the choice of the method. As for the subjective appreciation of the professionals, the first results of the discussions seem to show that teenagers were reluctant or resistant towards the medical method. Conclusion: This study shows that the reasons why teenagers still prefer the use of the surgical over the medical method compared to adults, seem to include the late request for an appointment, fear of pain and bleeding and organisational issues. Confidentiality does not seem to greatly influence the teenagers' choice. Nonetheless, medical professionals seem to favour the suction curettage procedure performed under anesthesia because they associate young age with vulnerability and psychological frailty and consequently diminished ability to cope with pain and emotional distress during the medical procedures.
Resumo:
Small centrifugal compressors are more and more widely used in many industrialsystems because of their higher efficiency and better off-design performance comparing to piston and scroll compressors as while as higher work coefficient perstage than in axial compressors. Higher efficiency is always the aim of the designer of compressors. In the present work, the influence of four partsof a small centrifugal compressor that compresses heavy molecular weight real gas has been investigated in order to achieve higher efficiency. Two parts concern the impeller: tip clearance and the circumferential position of the splitter blade. The other two parts concern the diffuser: the pinch shape and vane shape. Computational fluid dynamics is applied in this study. The Reynolds averaged Navier-Stokes flow solver Finflo is used. The quasi-steady approach is utilized. Chien's k-e turbulence model is used to model the turbulence. A new practical real gas model is presented in this study. The real gas model is easily generated, accuracy controllable and fairly fast. The numerical results and measurements show good agreement. The influence of tip clearance on the performance of a small compressor is obvious. The pressure ratio and efficiency are decreased as the size of tip clearance is increased, while the total enthalpy rise keeps almost constant. The decrement of the pressure ratio and efficiency is larger at higher mass flow rates and smaller at lower mass flow rates. The flow angles at the inlet and outlet of the impeller are increased as the size of tip clearance is increased. The results of the detailed flow field show that leakingflow is the main reason for the performance drop. The secondary flow region becomes larger as the size of tip clearance is increased and the area of the main flow is compressed. The flow uniformity is then decreased. A detailed study shows that the leaking flow rate is higher near the exit of the impeller than that near the inlet of the impeller. Based on this phenomenon, a new partiallyshrouded impeller is used. The impeller is shrouded near the exit of the impeller. The results show that the flow field near the exit of the impeller is greatly changed by the partially shrouded impeller, and better performance is achievedthan with the unshrouded impeller. The loading distribution on the impeller blade and the flow fields in the impeller is changed by moving the splitter of the impeller in circumferential direction. Moving the splitter slightly to the suction side of the long blade can improve the performance of the compressor. The total enthalpy rise is reduced if only the leading edge of the splitter ismoved to the suction side of the long blade. The performance of the compressor is decreased if the blade is bended from the radius direction at the leading edge of the splitter. The total pressure rise and the enthalpy rise of thecompressor are increased if pinch is used at the diffuser inlet. Among the fivedifferent pinch shape configurations, at design and lower mass flow rates the efficiency of a straight line pinch is the highest, while at higher mass flow rate, the efficiency of a concave pinch is the highest. The sharp corner of the pinch is the main reason for the decrease of efficiency and should be avoided. The variation of the flow angles entering the diffuser in spanwise direction is decreased if pinch is applied. A three-dimensional low solidity twisted vaned diffuser is designed to match the flow angles entering the diffuser. The numerical results show that the pressure recovery in the twisted diffuser is higher than in a conventional low solidity vaned diffuser, which also leads to higher efficiency of the twisted diffuser. Investigation of the detailed flow fields shows that the separation at lower mass flow rate in the twisted diffuser is later than in the conventional low solidity vaned diffuser, which leads to a possible wider flow range of the twisted diffuser.
Resumo:
We propose a simple rheological model to describe the thixotropic behavior of paints, since the classical hysteresis area, which is usually used, is not enough to evaluate thixotropy. The model is based on the assumption that viscosity is a direct measure of the structural level of the paint. The model depends on two equations: the Cross-Carreau equation to describe the equilibrium viscosity and a second order kinetic equation to express the time dependence of viscosity. Two characteristic thixotropic times are differentiated: one for the net structure breakdown, which is defined as a power law function of shear rate, and an other for the net structure buildup, which is not dependent on the shear rate. The knowledge of both kinetic processes can be used to improve the quality and applicability of paints. Five representative commercial protective marine paints are tested. They are based on chlorinated rubber, acrylic, alkyd, vinyl, and epoxy resins. The temperature dependence of the rheological behavior is also studied with the temperature ranging from 5 ºC to 35 ºC. It is found that the paints exhibit both shear thinning and thixotropic behavior. The model fits satisfactorily the thixotropy of the studied paints. It is also able to predict the thixotropy dependence on temperature. Both viscosity and the degree of thixotropy increase as the temperature decreases.
Resumo:
The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba's unique lifestyle and highly specialized body plan.
Resumo:
Two experimental studies evaluated the effect of aerobic and membrane aeration changes on sludge properties, biological nutrient removal and filtration processes in a pilot plant membrane bioreactor. The optimal operating conditions were found at an aerobic dissolved oxygen set-point (DO) of 0.5mgO2L-1 and a membrane specific aeration demand (SADm) of 1mh-1, where membrane aeration can be used for nitrification. Under these conditions, a total flow reduction of 42% was achieved (75% energy reduction) without compromising nutrient removal efficiencies, maintaining sludge characteristics and controlled filtration. Below these optimal operating conditions, the nutrient removal efficiency was reduced, increasing 20% for soluble microbial products, 14% for capillarity suction time and reducing a 15% for filterability. Below this DO set-point, fouling increased with a transmembrane pressure 75% higher. SADm below 1mh-1 doubled the values of transmembrane pressure, without recovery after achieving the initial conditions
Detailed crystallization study of co-precipitated Y1.47Gd1.53Fe5O12 and relevant magnetic properties
Resumo:
The crystallization process of co-precipitated Y1.5Gd1.5Fe5O12 powder heated up to 1000 ºC at rate of 5 °C min-1 was investigated. Above 810 ºC crystalline Y1.47Gd1.53Fe5O12 was obtained with a lattice parameter of 12.41 Å and a theoretical density of 5.84 g cm-3. Dry pressed rings were sintered at 1270 and 1320 ºC, increasing the grain-size from 3.1 to 6.5 µm, the theoretical density by 87.6 to 95.3% and decreasing Hc from 2.9725 to 1.4005 Oe. Additionally, Hc increased when the frequency of the hysteresis graph varied from 60 Hz to 10 kHz, the curie temperature was 282.4 ºC and Ms equalled 9.25 emu g-1 (0.17 kG) agreeing well with the Bs-value of the hysteresis graph and literature values.
Resumo:
Supersonic axial turbine stages typically exhibit lower efficiencies than subsonic axial turbine stages. One reason for the lower efficiency is the occurrence of shock waves. With higher pressure ratios the flow inside the turbine becomes relatively easily supersonic if there is only one turbine stage. Supersonic axial turbines can be designed in smaller physical size compared to subsonic axial turbines of same power. This makes them good candidates for turbochargers in large diesel engines, where space can be a limiting factor. Also the production costs are lower for a supersonic axial turbine stage than for two subsonic stages. Since supersonic axial turbines are typically low reaction turbines, they also create lower axial forces to be compensated with bearings compared to high reaction turbines. The effect of changing the stator-rotor axial gap in a small high (rotational) speed supersonic axial flow turbine is studied in design and off-design conditions. Also the effect of using pulsatile mass flow at the supersonic stator inlet is studied. Five axial gaps (axial space between stator and rotor) are modeled using threedimensional computational fluid dynamics at the design and three axial gaps at the off-design conditions. Numerical reliability is studied in three independent studies. An additional measurement is made with the design turbine geometry at intermediate off-design conditions and is used to increase the reliability of the modelling. All numerical modelling is made with the Navier-Stokes solver Finflo employing Chien’s k ¡ ² turbulence model. The modelling of the turbine at the design and off-design conditions shows that the total-to-static efficiency of the turbine decreases when the axial gap is increased in both design and off-design conditions. The efficiency drops almost linearily at the off-design conditions, whereas the efficiency drop accelerates with increasing axial gap at the design conditions. The modelling of the turbine stator with pulsatile inlet flow reveals that the mass flow pulsation amplitude is decreased at the stator throat. The stator efficiency and pressure ratio have sinusoidal shapes as a function of time. A hysteresis-like behaviour is detected for stator efficiency and pressure ratio as a function of inlet mass flow, over one pulse period. This behaviour arises from the pulsatile inlet flow. It is important to have the smallest possible axial gap in the studied turbine type in order to maximize the efficiency. The results for the whole turbine can also be applied to some extent in similar turbines operating for example in space rocket engines. The use of a supersonic stator in a pulsatile inlet flow is shown to be possible.
Resumo:
Centrifugal pumps are widely used in industrial and municipal applications, and they are an important end-use application of electric energy. However, in many cases centrifugal pumps operate with a significantly lower energy efficiency than they actually could, which typically has an increasing effect on the pump energy consumption and the resulting energy costs. Typical reasons for this are the incorrect dimensioning of the pumping system components and inefficiency of the applied pump control method. Besides the increase in energy costs, an inefficient operation may increase the risk of a pump failure and thereby the maintenance costs. In the worst case, a pump failure may lead to a process shutdown accruing additional costs. Nowadays, centrifugal pumps are often controlled by adjusting their rotational speed, which affects the resulting flow rate and output pressure of the pumped fluid. Typically, the speed control is realised with a frequency converter that allows the control of the rotational speed of an induction motor. Since a frequency converter can estimate the motor rotational speed and shaft torque without external measurement sensors on the motor shaft, it also allows the development and use of sensorless methods for the estimation of the pump operation. Still today, the monitoring of pump operation is based on additional measurements and visual check-ups, which may not be applicable to determine the energy efficiency of the pump operation. This doctoral thesis concentrates on the methods that allow the use of a frequency converter as a monitoring and analysis device for a centrifugal pump. Firstly, the determination of energy-efficiency- and reliability-based limits for the recommendable operating region of a variable-speed-driven centrifugal pump is discussed with a case study for the laboratory pumping system. Then, three model-based estimation methods for the pump operating location are studied, and their accuracy is determined by laboratory tests. In addition, a novel method to detect the occurrence of cavitation or flow recirculation in a centrifugal pump by a frequency converter is introduced. Its sensitivity compared with known cavitation detection methods is evaluated, and its applicability is verified by laboratory measurements for three different pumps and by using two different frequency converters. The main focus of this thesis is on the radial flow end-suction centrifugal pumps, but the studied methods can also be feasible with mixed and axial flow centrifugal pumps, if allowed by their characteristics.
Resumo:
The work reported in this thesis is dedicated to irreversible magnetic properties in pyrolytic nanocarbon samples. Based on atomic force microscope images, the samples consist of carbon clusters with radius 30..120 nm. These are treated as single-domain nanoparticles. Magnetic hysteresis, field cooled, zero field cooled and thermoremanent magnetization measurements were performed using an RF SQUID magnetometer and ferromagnetic behaviour was observed. Analysis suggests that the ferromagnetic ordering is associated with defects in a thin surface layer, whose thickness is independent of particle size. Critical radius for single-domain particles, critical radius for coherent rotation, magnetic layer thickness, distance between elementary magnetic moments, saturation magnetization, exchange stiffness constant and anisotropy energy density are also presented.
Resumo:
The thesis is related to the topic of image-based characterization of fibers in pulp suspension during the papermaking process. Papermaking industry is focusing on process control optimization and automatization, which makes it possible to manufacture highquality products in a resource-efficient way. Being a part of the process control, pulp suspension analysis allows to predict and modify properties of the end product. This work is a part of the tree species identification task and focuses on analysis of fiber parameters in the pulp suspension at the wet stage of paper production. The existing machine vision methods for pulp characterization were investigated, and a method exploiting direction sensitive filtering, non-maximum suppression, hysteresis thresholding, tensor voting, and curve extraction from tensor maps was developed. Application of the method to the microscopic grayscale pulp images made it possible to detect curves corresponding to fibers in the pulp image and to compute their morphological characteristics. Performance of the method was evaluated based on the manually produced ground truth data. An accuracy of fiber characteristics estimation, including length, width, and curvature, for the acacia pulp images was found to be 84, 85, and 60% correspondingly.
Resumo:
A study was conducted to evaluate the sorption and desorption of 14C herbicide saflufenacil (pyrimidinedione) in two soils in the State of São Paulo, classified as Red Yellow Latosol with clayey texture (LVA-1) and medium texture (LVA-2), using the batch method through isotherms. The soils were air dried and sieved a 2 mm mesh. The radioactivity was determined by liquid scintillation spectrometry in acclimatized room (25 ± 2 °C). Sorption isotherms were conducted for 5 concentrations of saflufenacil (5.0; 2.5; 1.0; 0.5 and 0.05 μg mL-1) and the results were adjusted to the Freundlich equation, thus obtaining the parameters of sorption followed by two extractions with 0.01 M CaCl2 to determine desorption parameters similarly to sorption. The results showed that saflufenacil sorption was low for both soils studied, being greater for the LVA with higher organic matter content. The desorption coefficients were greater than their sorption coefficients, suggesting the occurrence of hysteresis. The sorption and desorption isotherms (classified as type C isotherms), hysteresis and the t-test between the angular coefficient of the respective isotherms showed that both the sorption and desorption occur with equal intensity.
Resumo:
The influence of voltage on the conductance of toad skin was studied to identify the time course of the activation/deactivation dynamics of voltage-dependent Cl- channels located in the apical membrane of mitochondrion-rich cells in this tissue. Positive apical voltage induced an important conductance inhibition which took a few seconds to fully develop and was instantaneously released by pulse inversion to negative voltage, indicating a short-duration memory of the inhibiting factors. Sinusoidal stimulation at 23.4 mM [Cl-] showed hysteresis in the current versus voltage curves, even at very low frequency, suggesting that the rate of voltage application was also relevant for the inhibition/releasing effect to develop. We conclude that the voltage modulation of apical Cl- permeability is essentially a fast process and the apparent slow components of activation/deactivation obtained in the whole skin are a consequence of a gradual voltage build-up across the apical membrane due to voltage sharing between apical and basolateral membranes
Resumo:
Pulmonary dysfunction represents the most important cause of death in patients with paracoccidioidomycosis (PBM). In order to investigate the functional changes of the lungs in the early stages of PBM, a model of benign disease was developed by intratracheal challenge of 12-week old isogenic Wistar rats with 1 x 106 yeast forms of Paracoccidioides brasiliensis. Animals were studied 30 and 60 days after infection, when fully developed granulomas were demonstrable in the lungs. Measurements of airway resistance, lung elastance and tissue hysteresis were made during sinusoidal deformations (100 breaths/min, tidal volume = 2 ml) with direct measurement of alveolar pressure using the alveolar capsule technique. Infection caused a significant increase in hysteresis (infected: 1.69, N = 13; control: 1.13, N = 12, P = 0.024, ANOVA), with no alterations in airway resistance or lung elastance. Histopathological analysis revealed the presence of fully developed granulomas located in the axial compartment of the lung interstitial space. These results suggest that alterations of tissue mechanics represent an early event in experimental PBM