891 resultados para Hyperthyroidism, body composition
Resumo:
ABSTRACT: BACKGROUND: The prevalence of obesity has increased in societies of all socio-cultural backgrounds. To date, guidelines set forward to prevent obesity have universally emphasized optimal levels of physical activity. However there are few empirical data to support the assertion that low levels of energy expenditure in activity is a causal factor in the current obesity epidemic are very limited. METHODS: The Modeling the Epidemiologic Transition Study (METS) is a cohort study designed to assess the association between physical activity levels and relative weight, weight gain and diabetes and cardiovascular disease risk in five population-based samples at different stages of economic development. Twenty-five hundred young adults, ages 25-45, were enrolled in the study; 500 from sites in Ghana, South Africa, Seychelles, Jamaica and the United States. At baseline, physical activity levels were assessed using accelerometry and a questionnaire in all participants and by doubly labeled water in a subsample of 75 per site. We assessed dietary intake using two separate 24-h recalls, body composition using bioelectrical impedance analysis, and health history, social and economic indicators by questionnaire. Blood pressure was measured and blood samples collected for measurement of lipids, glucose, insulin and adipokines. Full examination including physical activity using accelerometry, anthropometric data and fasting glucose will take place at 12 and 24 months. The distribution of the main variables and the associations between physical activity, independent of energy intake, glucose metabolism and anthropometric measures will be assessed using cross-section and longitudinal analysis within and between sites. DISCUSSION: METS will provide insight on the relative contribution of physical activity and diet to excess weight, age-related weight gain and incident glucose impairment in five populations' samples of young adults at different stages of economic development. These data should be useful for the development of empirically-based public health policy aimed at the prevention of obesity and associated chronic diseases.
Resumo:
By use of a respiration chamber, 24-hour energy expenditure (EE), diet-induced thermogenesis (DIT), and basal and sleeping EE were measured in 20 young rural Gambian men during the "hungry" season (weight, 60.8 +/- 1.4 kg) and in a group of 16 European men matched for body composition (weight, 66.9 +/- 1.9 kg). The 24-h EE was lower in Gambian than in European men (2047 +/- 46 vs 2635 +/- 74 kcal/d, p less than 0.001, respectively). Basal EE and sleeping EE were also lower in Gambian than in European men (1.05 +/- 0.02 vs 1.25 +/- 0.02 kcal/min and 1.0 +/- 0.02 vs 1.18 +/- 0.02 kcal/min, p less than 0.01, respectively). DIT was blunted in Gambian compared with European men (6.3 +/- 0.6% vs 12.1 +/- 0.5%, p less than 0.001 respectively). The net efficiency of walking was greater in Gambian than in European men (23.2 +/- 0.3% vs 20.1 +/- 0.4%, p less than 0.001, respectively). A low basal and sleeping EE, a reduced DIT, and a high work efficiency are important energy-sparing mechanisms in Gambian men, which allow them to cope with a marginal level of dietary intake during the hungry season.
Resumo:
Visceral adiposity is increasingly recognized as a key condition for the development of obesity related disorders, with the ratio between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) reported as the best correlate of cardiometabolic risk. In this study, using a cohort of 40 obese females (age: 25-45 y, BMI: 28-40 kg/m(2)) under healthy clinical conditions and monitored over a 2 weeks period we examined the relationships between different body composition parameters, estimates of visceral adiposity and blood/urine metabolic profiles. Metabonomics and lipidomics analysis of blood plasma and urine were employed in combination with in vivo quantitation of body composition and abdominal fat distribution using iDXA and computerized tomography. Of the various visceral fat estimates, VAT/SAT and VAT/total abdominal fat ratios exhibited significant associations with regio-specific body lean and fat composition. The integration of these visceral fat estimates with metabolic profiles of blood and urine described a distinct amino acid, diacyl and ether phospholipid phenotype in women with higher visceral fat. Metabolites important in predicting visceral fat adiposity as assessed by Random forest analysis highlighted 7 most robust markers, including tyrosine, glutamine, PC-O 44∶6, PC-O 44∶4, PC-O 42∶4, PC-O 40∶4, and PC-O 40∶3 lipid species. Unexpectedly, the visceral fat associated inflammatory profiles were shown to be highly influenced by inter-days and between-subject variations. Nevertheless, the visceral fat associated amino acid and lipid signature is proposed to be further validated for future patient stratification and cardiometabolic health diagnostics.
Resumo:
BACKGROUND: Obesity is becoming more frequent in children; understanding the extent to which this condition affects not only carbohydrate and lipid metabolism but also protein metabolism is of paramount importance. OBJECTIVE: We evaluated the kinetics of protein metabolism in obese, prepubertal children in the static phase of obesity. DESIGN: In this cross-sectional study, 9 obese children (x +/- SE: 44+/-4 kg, 30.9+/-1.5% body fat) were compared with 8 lean (28+/-2 kg ,16.8+/-1.2% body fat), age-matched (8.5+/-0.2 y) control children. Whole-body nitrogen flux, protein synthesis, and protein breakdown were calculated postprandially over 9 h from 15N abundance in urinary ammonia by using a single oral dose of [15N]glycine; resting energy expenditure (REE) was assessed by indirect calorimetry (canopy) and body composition by multiple skinfold-thickness measurements. RESULTS: Absolute rates of protein synthesis and breakdown were significantly greater in obese children than in control children (x +/- SE: 208+/-24 compared with 137+/-14 g/d, P < 0.05, and 149+/-20 compared with 89+/-13 g/d, P < 0.05, respectively). When these variables were adjusted for fat-free mass by analysis of covariance, however, the differences between groups disappeared. There was a significant relation between protein synthesis and fat-free mass (r = 0.83, P < 0.001) as well as between protein synthesis and REE (r = 0.79, P < 0.005). CONCLUSIONS: Obesity in prepubertal children is associated with an absolute increase in whole-body protein turnover that is consistent with an absolute increase in fat-free mass, both of which contribute to explaining the greater absolute REE in obese children than in control children.
Resumo:
We evaluated the accuracy of skinfold thicknesses, BMI and waist circumference for the prediction of percentage body fat (PBF) in a representative sample of 372 Swiss children aged 6-13 years. PBF was measured using dual-energy X-ray absorptiometry. On the basis of a preliminary bootstrap selection of predictors, seven regression models were evaluated. All models included sex, age and pubertal stage plus one of the following predictors: (1) log-transformed triceps skinfold (logTSF); (2) logTSF and waist circumference; (3) log-transformed sum of triceps and subscapular skinfolds (logSF2); (4) log-transformed sum of triceps, biceps, subscapular and supra-iliac skinfolds (logSF4); (5) BMI; (6) waist circumference; (7) BMI and waist circumference. The adjusted determination coefficient (R² adj) and the root mean squared error (RMSE; kg) were calculated for each model. LogSF4 (R² adj 0.85; RMSE 2.35) and logSF2 (R² adj 0.82; RMSE 2.54) were similarly accurate at predicting PBF and superior to logTSF (R² adj 0.75; RMSE 3.02), logTSF combined with waist circumference (R² adj 0.78; RMSE 2.85), BMI (R² adj 0.62; RMSE 3.73), waist circumference (R² adj 0.58; RMSE 3.89), and BMI combined with waist circumference (R² adj 0.63; RMSE 3.66) (P < 0.001 for all values of R² adj). The finding that logSF4 was only modestly superior to logSF2 and that logTSF was better than BMI and waist circumference at predicting PBF has important implications for paediatric epidemiological studies aimed at disentangling the effect of body fat on health outcomes.
Resumo:
Changes in the rate of growth and adiposity index (Quetelet index), calculated as weight/(length)2, kg/m2, were monitored from birth to 3 years in 19 premature babies (post-conceptional age 31.2 +/- 2 weeks) who were subjected during rapid growth (16 +/- 4 g/kg.day) to initial metabolic balance studies in the first weeks of life. These studies showed that the rate of fat accretion in these infants (3.3 +/- 0.9 g/kg.day) was substantially greater than that observed in fetuses of the same gestational age (2 g/kg.day) but the adiposity index was lower (9.6 +/- 1 kg/m2) than intrauterine values (11 kg/m2). Since at 6 months of age (corrected for gestational age at birth) the adiposity index was close to normality (103% of standard), the greater rate of fat accretion in early life contributed to progressively restore total body fat in premature babies. It is concluded that despite substantial fat deposition during the first weeks of life, the future evolution of these premature babies is favourable as judged from the normalization of adiposity index within the first 2 years of life.
Resumo:
The aim of this study was to determine the prevalence of low fat-free mass index (FFMI) and high and very high body fat mass index (BFMI) after lung transplantation (LTR). A total of 37 LTR patients were assessed prior to and at 1 month, 1 year and 2 years for FFM and compared to 37 matched volunteers (VOL). FFM was calculated by the Geneva equation and normalized for height (kg/m(2)). Subjects were classified as FFMI "low", <or=17.4 in men and <or=15.0 in women; BFMI "high", 5.2-8.1 in men and 8.3-11.7 in women; or "very high" >8.2 kg/m(2) in men and >11.8 kg/m(2) in women. In 23 M/14 F, body mass index (BMI) was 22.3+/-4.4 and 20.1+/-4.9 kg/m(2), respectively. The prevalence of low FFMI was 80% at 1 month and 33% at 2 years after LTR. Prevalence of very high BFMI increased and was higher in patients than VOL after LTR. The prevalence of low FFMI was high prior to and remained important 2 years after LTR, whereas BFMI was lower prior to and higher 2 years after LTR.
Resumo:
BACKGROUND: Intraabdominal adipose tissue (IAAT) is the body fat depot most strongly related to disease risk. Weight reduction is advocated for overweight people to reduce total body fat and IAAT, although little is known about the effect of weight loss on abdominal fat distribution in different races. OBJECTIVE: We compared the effects of diet-induced weight loss on changes in abdominal fat distribution in white and black women. DESIGN: We studied 23 white and 23 black women, similar in age and body composition, in the overweight state [mean body mass index (BMI; in kg/m(2)): 28.8] and the normal-weight state (mean BMI: 24.0) and 38 never-overweight control women (mean BMI: 23.4). We measured total body fat by using a 4-compartment model, trunk fat by using dual-energy X-ray absorptiometry, and cross-sectional areas of IAAT (at the fourth and fifth lumbar vertebrae) and subcutaneous abdominal adipose tissue (SAAT) by using computed tomography. RESULTS: Weight loss was similar in white and black women (13.1 and 12.6 kg, respectively), as were losses of total fat, trunk fat, and waist circumference. However, white women lost more IAAT (P < 0.001) and less SAAT (P < 0.03) than did black women. Fat patterns regressed toward those of their respective control groups. Changes in waist circumference correlated with changes in IAAT in white women (r = 0.54, P < 0.05) but not in black women (r = 0.19, NS). CONCLUSIONS: Despite comparable decreases in total and trunk fat, white women lost more IAAT and less SAAT than did black women. Waist circumference was not a suitable surrogate marker for tracking changes in the visceral fat compartment in black women.
Resumo:
BACKGROUND: Health risks associated with subclinical hypothyroidism in older adults are unclear. Our objective was to compare the functional mobility of people aged 70 to 79 years by thyroid function categorized by thyrotropin (TSH) level as euthyroid (>or=0.4 to <4.5 mIU/L), mild subclinical hypothyroid (>or=4.5 to <7.0 mIU/L), or moderate subclinical hypothyroid (>or=7.0 to <or=20.0 mIU/L with a normal free thyroxine level) cross-sectionally and over 2 years. METHODS: A total of 2290 community-dwelling residents participating in the year 2 clinic visit (July 1998-June 1999) of the Health, Aging, and Body Composition (Health ABC) Study, who had measured TSH level, had the capacity to walk 20 m unaided, and were not taking thyroid medication or had TSH levels consistent with hyperthyroidism or hypothyroidism. Main outcome measures included self-reported and performance-based measures of mobility (usual and rapid gait speed and endurance walking ability) assessed at study baseline (year 2) and 2 years later. RESULTS: In age- and sex-adjusted analyses, the mild subclinical hypothyroid group (vs the euthyroid group) demonstrated better mobility (faster mean usual and rapid gait speed [1.20 vs 1.15 m/s and 1.65 vs 1.56 m/s, respectively; P < .001] and had a higher percentage of those with good cardiorespiratory fitness and reported walking ease [39.2% vs 28.0% and 44.7% vs 36.5%, respectively; P < .001]). After 2 years, persons with mild subclinical hypothyroidism experienced a similar decline as the euthyroid group but maintained their mobility advantage. Persons with moderate subclinical hypothyroidism had similar mobility and mobility decline as the euthyroid group. CONCLUSION: Generally, well-functioning 70- to 79-year-old individuals with subclinical hypothyroidism do not demonstrate increased risk of mobility problems, and those with mild elevations in TSH level show a slight functional advantage.
Resumo:
Components of daily energy expenditure were measured serially by whole-body calorimetry in Gambian women before pregnancy and at 6, 12, 18, 24, 30, and 36 wk gestation. Weight gain was (mean +/- SD) 6.8 +/- 2.8 kg, fat deposition was 2.0 +/- 2.5 kg and lean tissue deposition was 5.0 +/- 2.5 kg. Basal metabolic rate (BMR) was depressed during the first 18 wk of gestation, causing total cumulative maintenance costs by week 36 to be 8.4 MJ. Individual responses to pregnancy correlated with changes in body mass (36 wk: delta BMR vs delta weight; r = 0.60, P < 0.01 delta BMR vs delta LBM; r = 0.62, P < 0.01). There was no significant increase in the cost of treadmill exercise (0% slope: F = 0.71, P = 0.64; 5% slope: F = 1.97, P = 0.10), 24-h energy expenditure (F = 0.72, P = 0.64), activity or diet-induced thermogenesis (F = 1.02, P = 0.43), during pregnancy in spite of body weight gain. Total metabolic costs over 36 wk were 144 MJ (fetus 43 MJ, fat deposition 92 MJ, cumulative maintenance costs 8.4 MJ). These were far lower than reported for well-nourished Western populations.
Resumo:
The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty.
Resumo:
OBJECTIVE: Body mass index does not discriminate body fat from fat-free mass or determine changes in these parameters with physical activity and aging. Body fat mass index (BFMI) and fat-free mass index (FFMI) permit comparisons of subjects with different heights. This study evaluated differences in body mass index, BFMI, and FFMI in physically active and sedentary subjects younger and older than 60 y and determined the association between physical activity, age, and body composition parameters in a healthy white population between ages 18 and 98 y. METHODS: Body fat and fat-free mass were determined in healthy white men (n = 3549) and women (n = 3184), between ages 18 and 98 y, by bioelectrical impedance analysis. BFMI and FFMI (kg/m2) were calculated. Physical activity was defined as at least 3 h/wk of endurance-type activity for at least 2 mo. RESULTS: Physically active as opposed to sedentary subjects were more likely to have a low BFMI (men: odds ratio [OR], 1.4; confidence interval [CI], 0.7-2.5; women: OR 1.9, CI 1.6-2.2) and less likely to have very high BFMI (men: OR, 0.2; CI, 0.1-0.2; women: OR, 0.1; CI, 0.02-0.2), low FFMI (men: OR, 0.5; CI, 0.3-0.9; women: OR, 0.7; CI, 0.6-0.9), or very high FFMI (men: OR, 0.6; CI, 0.4-0.8; women: OR, 0.7; CI, 0.5-1.0). Compared with subjects younger than 60 y, those older than 60 y were more like to have very high BFMI (men: OR, 6.5; CI, 4.5-9.3; women: OR, 14.0; CI, 9.6-20.5), and women 60 y and older were less likely to have a low BFMI (OR, 0.4; CI, 0.2-0.5). CONCLUSIONS: A clear association was found between low physical activity or age and height-normalized body composition parameters (BFMI and FFMI) derived from bioelectrical impedance analysis. Physically active subjects were more likely to have high or very high or low FFMI. Older subjects had higher body weights and BFMI.
Resumo:
This study aimed to compare the effects of 2 different prior endurance exercises on subsequent whole-body fat oxidation kinetics. Fifteen men performed 2 identical submaximal incremental tests (Incr2) on a cycle ergometer after (i) a ∼40-min submaximal incremental test (Incr1) followed by a 90-min continuous exercise performed at 50% of maximal aerobic power-output and a 1-h rest period (Heavy); and (ii) Incr1 followed by a 2.5-h rest period (Light). Fat oxidation was measured using indirect calorimetry and plotted as a function of exercise intensity during Incr1 and Incr2. A sinusoidal equation, including 3 independent variables (dilatation, symmetry and translation), was used to characterize the fat oxidation kinetics and to determine the intensity (Fat(max)) that elicited the maximal fat oxidation (MFO) during Incr. After the Heavy and Light trials, Fat(max), MFO, and fat oxidation rates were significantly greater during Incr2 than Incr1 (p < 0.001). However, Δ (i.e., Incr2-Incr1) Fat(max), MFO, and fat oxidation rates were greater in the Heavy compared with the Light trial (p < 0.05). The fat oxidation kinetics during Incr2(Heavy) showed a greater dilatation and rightward asymmetry than Incr1(Heavy), whereas only a greater dilatation was observed in Incr2(Light) (p < 0.05). This study showed that although to a lesser extent in the Light trial, both prior exercise sessions led to an increase in Fat(max), MFO, and absolute fat oxidation rates during Incr2, inducing significant changes in the shape of the fat oxidation kinetics.
Resumo:
BACKGROUND AND AIMS: Normal weight obesity (NWO) has been defined as an excessive body fat (BF) associated with a normal body mass index (BMI). Still, little is known regarding the effect of differing cut-offs for %BF on the prevalence of NWO. We thus conducted a study to assess the effect of modifying the cut-offs for excessive %BF on the prevalence of NWO. METHODS: We examined a convenience sample of 1523 Portuguese adults. BF was measured by validated hand-held bioimpedance. NWO was defined as a BMI < 25 kg/m2 and a %BF >30% or according to sex- and age-specific %BF cut-offs. RESULTS: Prevalence of NWO was 10.1% in women and 3.2% in men. In women, prevalence of NWO increased considerably with age, and virtually all women aged over 55 with a BMI < 25 kg/m2 were actually considered as NWO. Using sex-specific cut-offs for BF (men: 29.1%; women: 37.2%) led to moderately lower prevalence of NWO in women. Using sex and age-specific cut-offs for %BF considerably decreased the prevalence of NWO in women, i.e. 0.5e2.5% (depending on the criterion) but not in men, i.e. 1.9e3.4%. CONCLUSIONS: In women, the prevalence of NWO varies considerably according to the cut-off used to define excess BF, whereas a much smaller variation is found in men. While further studies are needed to describe the risk associated with NWO using various %BF cut-offs, this study suggests that sex- and age-specific cut-offs may be preferred.
Resumo:
AIM: The resting metabolic rate (RMR) varies among pregnant women. The factors responsible for this variability are unknown. This study aimed to assess the influence of the prepregnancy body mass index (BMI) on the RMR during late pregnancy. METHODS: RMR, height, weight, and total (TEE) and activity (AEE) energy expenditures were measured in 46 healthy women aged 31 ± 5 years (mean ± SD) with low (<19.8), normal (19.8-26.0), and high (>26.0) prepregnancy BMI at 38.2 ± 1.5 weeks of gestation (t(gest)) and 40 ± 7 weeks postpartum (t(post)) (n = 27). RESULTS: The mean t(gest) RMR for the low-, normal-, and high-BMI groups was 1,373, 1,807, and 2,191 kcal/day, respectively (p = 0.001). The overall mean t(gest) RMR was 316 ± 183 kcal/day (21%), higher than the overall mean t(post) value and this difference was correlated with gestational weight gain (r = 0.78, p < 0.001). The scaled metabolic rate by allometry (RMR/kilograms⁰·⁷³) was similar in the low-, normal-, and high-BMI groups, respectively (p = 0.45). Changes in t(gest) TEE closely paralleled changes in t(gest) RMR (r = 0.84, p < 0.001). AEE was similar among the BMI groups. CONCLUSION: The RMR is significantly increased in the third trimester of pregnancy. The absolute gestational RMR is higher in women with high prepregnancy BMI due to increased body weight. The scaled metabolic rate (RMR/kilograms⁰·⁷³) is similar among the BMI groups of pregnant women.