971 resultados para Hybrid Multicast Framework
RadiaLE: A framework for designing and assessing link quality estimators in wireless sensor networks
Resumo:
Stringent cost and energy constraints impose the use of low-cost and low-power radio transceivers in large-scale wireless sensor networks (WSNs). This fact, together with the harsh characteristics of the physical environment, requires a rigorous WSN design. Mechanisms for WSN deployment and topology control, MAC and routing, resource and mobility management, greatly depend on reliable link quality estimators (LQEs). This paper describes the RadiaLE framework, which enables the experimental assessment, design and optimization of LQEs. RadiaLE comprises (i) the hardware components of the WSN testbed and (ii) a software tool for setting-up and controlling the experiments, automating link measurements gathering through packets-statistics collection, and analyzing the collected data, allowing for LQEs evaluation. We also propose a methodology that allows (i) to properly set different types of links and different types of traffic, (ii) to collect rich link measurements, and (iii) to validate LQEs using a holistic and unified approach. To demonstrate the validity and usefulness of RadiaLE, we present two case studies: the characterization of low-power links and a comparison between six representative LQEs. We also extend the second study for evaluating the accuracy of the TOSSIM 2 channel model.
Resumo:
Wireless Sensor Networks (WSN) are being used for a number of applications involving infrastructure monitoring, building energy monitoring and industrial sensing. The difficulty of programming individual sensor nodes and the associated overhead have encouraged researchers to design macro-programming systems which can help program the network as a whole or as a combination of subnets. Most of the current macro-programming schemes do not support multiple users seamlessly deploying diverse applications on the same shared sensor network. As WSNs are becoming more common, it is important to provide such support, since it enables higher-level optimizations such as code reuse, energy savings, and traffic reduction. In this paper, we propose a macro-programming framework called Nano-CF, which, in addition to supporting in-network programming, allows multiple applications written by different programmers to be executed simultaneously on a sensor networking infrastructure. This framework enables the use of a common sensing infrastructure for a number of applications without the users having to worrying about the applications already deployed on the network. The framework also supports timing constraints and resource reservations using the Nano-RK operating system. Nano- CF is efficient at improving WSN performance by (a) combining multiple user programs, (b) aggregating packets for data delivery, and (c) satisfying timing and energy specifications using Rate- Harmonized Scheduling. Using representative applications, we demonstrate that Nano-CF achieves 90% reduction in Source Lines-of-Code (SLoC) and 50% energy savings from aggregated data delivery.
Resumo:
This work focuses on highly dynamic distributed systems with Quality of Service (QoS) constraints (most importantly real-time constraints). To that purpose, real-time applications may benefit from code offloading techniques, so that parts of the application can be offloaded and executed, as services, by neighbour nodes, which are willing to cooperate in such computations. These applications explicitly state their QoS requirements, which are translated into resource requirements, in order to evaluate the feasibility of accepting other applications in the system.
Resumo:
Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive (HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive (DA) method in terms of faster and improved tracking and parameter convergence.
Resumo:
Several projects in the recent past have aimed at promoting Wireless Sensor Networks as an infrastructure technology, where several independent users can submit applications that execute concurrently across the network. Concurrent multiple applications cause significant energy-usage overhead on sensor nodes, that cannot be eliminated by traditional schemes optimized for single-application scenarios. In this paper, we outline two main optimization techniques for reducing power consumption across applications. First, we describe a compiler based approach that identifies redundant sensing requests across applications and eliminates those. Second, we cluster the radio transmissions together by concatenating packets from independent applications based on Rate-Harmonized Scheduling.
Resumo:
As the complexity of embedded systems increases, multiple services have to compete for the limited resources of a single device. This situation is particularly critical for small embedded devices used in consumer electronics, telecommunication, industrial automation, or automotive systems. In fact, in order to satisfy a set of constraints related to weight, space, and energy consumption, these systems are typically built using microprocessors with lower processing power and limited resources. The CooperatES framework has recently been proposed to tackle these challenges, allowing resource constrained devices to collectively execute services with their neighbours in order to fulfil the complex Quality of Service (QoS) constraints imposed by users and applications. In order to demonstrate the framework's concepts, a prototype is being implemented in the Android platform. This paper discusses key challenges that must be addressed and possible directions to incorporate the desired real-time behaviour in Android.
Resumo:
The problem of providing a hybrid wired/wireless communications for factory automation systems is still an open issue, notwithstanding the fact that already there are some solutions. This paper describes the role of simulation tools on the validation and performance analysis of two wireless extensions for the PROFIBUS protocol. In one of them, the Intermediate Systems, which connect wired and wireless network segments, operate as repeaters. In the other one the Intermediate Systems operate as bridge. We also describe how the analytical analysis proposed for these kinds of networks can be used for the setting of some network parameters and for the guaranteeing real-time behaviour of the system. Additionally, we also compare the bridge-based solution simulation results with the analytical results.
Resumo:
ARINC specification 653-2 describes the interface between application software and underlying middleware in a distributed real-time avionics system. The real-time workload in this system comprises of partitions, where each partition consists of one or more processes. Processes incur blocking and preemption overheads and can communicate with other processes in the system. In this work we develop compositional techniques for automated scheduling of such partitions and processes. At present, system designers manually schedule partitions based on interactions they have with the partition vendors. This approach is not only time consuming, but can also result in under utilization of resources. In contrast, the technique proposed in this paper is a principled approach for scheduling ARINC-653 partitions and therefore should facilitate system integration.
Resumo:
Mobile applications are becoming increasingly more complex and making heavier demands on local system resources. Moreover, mobile systems are nowadays more open, allowing users to add more and more applications, including third-party developed ones. In this perspective, it is increasingly expected that users will want to execute in their devices applications which supersede currently available resources. It is therefore important to provide frameworks which allow applications to benefit from resources available on other nodes, capable of migrating some or all of its services to other nodes, depending on the user needs. These requirements are even more stringent when users want to execute Quality of Service (QoS) aware applications, such as voice or video. The required resources to guarantee the QoS levels demanded by an application can vary with time, and consequently, applications should be able to reconfigure themselves. This paper proposes a QoS-aware service-based framework able to support distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.
Resumo:
In distributed soft real-time systems, maximizing the aggregate quality-of-service (QoS) is a typical system-wide goal, and addressing the problem through distributed optimization is challenging. Subtasks are subject to unpredictable failures in many practical environments, and this makes the problem much harder. In this paper, we present a robust optimization framework for maximizing the aggregate QoS in the presence of random failures. We introduce the notion of K-failure to bound the effect of random failures on schedulability. Using this notion we define the concept of K-robustness that quantifies the degree of robustness on QoS guarantee in a probabilistic sense. The parameter K helps to tradeoff achievable QoS versus robustness. The proposed robust framework produces optimal solutions through distributed computations on the basis of Lagrangian duality, and we present some implementation techniques. Our simulation results show that the proposed framework can probabilistically guarantee sub-optimal QoS which remains feasible even in the presence of random failures.
Resumo:
In this paper we propose a framework for the support of mobile application with Quality of Service (QoS) requirements, such as voice or video, capable of supporting distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.
Resumo:
Link quality estimation is a fundamental building block for the design of several different mechanisms and protocols in wireless sensor networks (WSN). A thorough experimental evaluation of link quality estimators (LQEs) is thus mandatory. Several WSN experimental testbeds have been designed ([1–4]) but only [3] and [2] targeted link quality measurements. However, these were exploited for analyzing low-power links characteristics rather than the performance of LQEs. Despite its importance, the experimental performance evaluation of LQEs remains an open problem, mainly due to the difficulty to provide a quantitative evaluation of their accuracy. This motivated us to build a benchmarking testbed for LQE - RadiaLE, which we present here as a demo. It includes (i.) hardware components that represent the WSN under test and (ii.) a software tool for the set up and control of the experiments and also for analyzing the collected data, allowing for LQEs evaluation.
Resumo:
The integration of wired and wireless technologies in modern manufacturing plants is now of paramount importance for the competitiveness of any industry. Being PROFIBUS the most widely used technology in use for industrial communications, several solutions have been proposed to provide PROFIBUS networks with wireless communications. One of them, the bridge-based hybrid wired/wireless PROFIBUS network approach, proposes an architecture in which the Intermediate Systems operate at Data Link Layer level, as bridges. In this paper, we propose an architecture for the implementation of such a bridge and the required protocols to handle communication between stations in different domains and the mobility of wireless stations.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. This has motivated many initiatives that have been developing scientific workflow tools. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from workflow tasks specification, decentralizing the control of workflow activities, and allowing their tasks to run autonomous in distributed infrastructures, for instance on Clouds. Furthermore many workflow tools only support the execution of Direct Acyclic Graphs (DAG) without the concept of iterations, where activities are executed millions of iterations during long periods of time and supporting dynamic workflow reconfigurations after certain iteration. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on the Process Networks model, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures, e. g. on Clouds. Each AWA executes a Task developed as a Java class that implements a generic interface allowing end-users to code their applications without concerns for low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables support to dynamic workflow reconfiguration and monitoring of the execution of workflows. We describe how AWARD supports dynamic reconfiguration and discuss typical workflow reconfiguration scenarios. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to a small dedicated cluster and the Amazon (Elastic Computing EC2) Cloud.
Resumo:
Real-time scheduling usually considers worst-case values for the parameters of task (or message stream) sets, in order to provide safe schedulability tests for hard real-time systems. However, worst-case conditions introduce a level of pessimism that is often inadequate for a certain class of (soft) real-time systems. In this paper we provide an approach for computing the stochastic response time of tasks where tasks have inter-arrival times described by discrete probabilistic distribution functions, instead of minimum inter-arrival (MIT) values.