875 resultados para Human Movement
Resumo:
Introduction: Evidence concerning the alteration of knee function during landing suffers from a lack of consensus. This uncertainty can be attributed to methodological flaws, particularly in relation to the statistical analysis of variable human movement data. Aim: The aim of this study was to compare single-subject and group analysis in quantifying alterations in the magnitude and within-participant variability of knee mechanics during a step landing task. Methods: A group of healthy men (N = 12) stepped-down from a knee-high platform for 60 consecutive trials, each trial separated by a 1-minute rest. The magnitude and within-participant variability of sagittal knee stiffness and coordination of the landing leg during the immediate postimpact period were evaluated. Coordination of the knee was quantified in the sagittal plane by calculating the mean absolute relative phase of sagittal shank and thigh motion (MARP1) and between knee rotation and knee flexion (MARP2). Changes across trials were compared between both group and single-subject statistical analyses. Results: The group analysis detected significant reductions in MARP1 magnitude. However, the single-subject analyses detected changes in all dependent variables, which included increases in variability with task repetition. Between-individual variation was also present in the timing, size and direction of alterations to task repetition. Conclusion: The results have important implications for the interpretation of existing information regarding the adaptation of knee mechanics to interventions such as fatigue, footwear or landing height. It is proposed that a familiarisation session be incorporated in future experiments on a single-subject basis prior to an intervention.
Resumo:
Objective: To evaluate the feasibility and effect of a water-based exercise (WBE) program on lymphedema status and shoulder range of motion (ROM) among women with breast cancer related lymphedema. Design: Single-blinded, randomized controlled pilot trial. Twenty-nine eligible breast cancer survivors (median 10 years after surgery) with arm lymphedema (median 21% inter limb difference) were included and randomized into intervention (n= 15) or control (n=14). Twenty-five participants completed the study. The intervention was at least twice weekly WBE for 8 weeks; supervised initially but performed independently during the study period. Outcomes of interest were feasibility as measured by retention and adherence, lymphedema status as measured by optoelectronic perometry, bioimpedance spectroscopy and tissue dielectric constant, and shoulder range of motion (ROM) as measured by goniometer. Results: Four participants were not measured at post-intervention and were not included in the analysis (retention). Four participants in the intervention group did not perform the minimum WBE criteria set (adherence). No effect was found on lymphedema status. Compared to the control group, median ROM change for flexion was 6 (1-10) degrees (p<0.001) and 6 (0-15.5) degrees (p=0,07) for external rotation. Clinically relevant increase in the intervention group was found for 36% in flexion (p≤0.05) and (57%) in external rotation (p≤0.05) compared to controls. Conclusions: This study shows WBE is feasible for breast cancer survivors with arm lymphedema and that shoulder ROM can be improved years after cancer treatment has been completed.
Resumo:
Background and Aims: Falls and fall-related injuries result in reduced functioning, loss of independence, premature nursing home admissions and mortality. Malnutrition is associated with falls in the acute setting, but little is known about malnutrition and falls risk in the community. The aim of this study was to assess the association between malnutrition risk, falls risk and falls over a one-year period in community-dwelling older adults. Methods: Two hundred and fifty four subjects >65 years of age were recruited to participate in a study in order to identify risk factors for falls. Malnutrition risk was determined using the Mini Nutritional Assessment–Short Form. Results: 28.6% had experienced a fall and according to the Mini Nutritional Assessment-Short Form 3.9% (n=10) of subjects were at risk of malnutrition. There were no associations between malnutrition risk, the risk of falls, nor actual falls in healthy older adults in the community setting. Conclusions: There was a low prevalence of malnutrition risk in this sample of community-dwelling older adults and no association between nutritional risk and falls. Screening as part of a falls prevention program should focus on the risk of developing malnutrition as this is associated with falls.
Resumo:
We examined the effects of progressive resistance training (PRT) and supplementation with calcium-vitamin D(3) fortified milk on markers of systemic inflammation, and the relationship between inflammation and changes in muscle mass, size and strength. Healthy men aged 50-79 years (n = 180) participated in this 18-month randomized controlled trial that comprised a factorial 2 x 2 design. Participants were randomized to (1) PRT + fortified milk supplement, (2) PRT, (3) fortified milk supplement, or (4) a control group. Participants assigned to PRT trained 3 days per week, while those in the supplement groups consumed 400 ml day(-1) of milk containing 1,000 mg calcium plus 800 IU vitamin D(3). We collected venous blood samples at baseline, 12 and 18 months to measure the serum concentrations of IL-6, TNF-alpha and hs-CRP. There were no exercise x supplement interactions, but serum IL-6 was 29% lower (95% CI, -62, 0) in the PRT group compared with the control group after 12 months. Conversely, IL-6 was 31% higher (95% CI, -2, 65) in the supplement group compared with the non-supplemented groups after 12 and 18 months. These between-group differences did not persist after adjusting for changes in fat mass. In the PRT group, mid-tibia muscle cross-sectional area increased less in men with higher pre-training inflammation compared with those men with lower inflammation (net difference similar to 2.5%, p < 0.05). In conclusion, serum IL-6 concentration decreased following PRT, whereas it increased after supplementation with fortified milk concomitant with changes in fat mass. Furthermore, low-grade inflammation at baseline restricted muscle hypertrophy following PRT.
Resumo:
Purpose The primary objective of this study was to examine the effect of exercise on subjective sleep quality in heart failure patients. Methods This study used a randomised, controlled trial design with blinded end-point analysis. Participants were randomly assigned to a 12-week programme of education and self-management support (control) or to the same programme with the addition of a tailored physical activity programme designed and supervised by an exercise specialist (intervention). The intervention consisted of 1 hour of aerobic and resistance exercise twice a week. Participants included 108 patients referred to three hospital heart failure services in Queensland, Australia. Results Patients who participated in supervised exercise classes showed significant improvement in subjective sleep quality, sleep latency, sleep disturbance and global sleep quality scores after 12 weeks of supervised hospital based exercise. Secondary analysis showed that improvements in sleep quality were correlated with improvements in geriatric depression score (p=0.00) and exercise performance (p=0.03). General linear models were used to examine whether the changes in sleep quality following intervention occurred independently of changes in depression, exercise performance and weight. Separate models adjusting for each covariate were performed. Results suggest that exercise significantly improved sleep quality independent of changes in depression, exercise performance and weight. Conclusion This study supports the hypothesis that a 12 week program of aerobic and resistance exercise improves subjective sleep quality in patients with heart failure. This is the first randomised controlled trial to examine the role of exercise in the improvement of sleep quality for patients with this disease. While this study establishes exercise as a therapy for poor sleep quality, further research is needed to investigate exercise as a treatment for other parameters of sleep in this population. Study investigators plan to undertake a more in-depth examination within the next 12 months
Resumo:
Purpose Exercise for Health was a randomized, controlled trial designed to evaluate two modes of delivering (face-to-face [FtF] and over-the-telephone [Tel]) an 8-month translational exercise intervention, commencing 6-weeks post-breast cancer surgery (PS). Methods Outcomes included quality of life (QoL), function (fitness and upper-body) and treatment-related side effects (fatigue, lymphoedema, body mass index, menopausal symptoms, anxiety, depression and pain). Generalised estimating equation modelling determined time (baseline [5-weeks PS], mid-intervention [6-months PS], post-intervention [12-months PS]), group (FtF, Tel, Usual Care [UC]) and time-by-group effects. 194 women representative of the breast cancer population were randomised to the FtF (n=67), Tel (n=67) and UC (n=60) groups. Results: There were significant (p<0.05) interaction effects on QoL, fitness and fatigue, with differences being observed between the treatment groups and the UC group. Trends observed for the treatment groups were similar. The treatment groups reported improved QoL, fitness and fatigue over time and changes observed between baseline and post-intervention were clinically relevant. In contrast, the UC group experienced no change, or worsening QoL, fitness and fatigue, mid-intervention. Although improvements in the UC group occurred by 12-months post-surgery, the change did not meet the clinically relevant threshold. There were no differences in other treatment-related side-effects between groups. Conclusion This translational intervention trial, delivered either face-to-face or over-the-telephone, supports exercise as a form of adjuvant breast cancer therapy that can prevent declines in fitness and function during treatment and optimise recovery post-treatment.
Resumo:
The aim of this study was to determine if athletes with a history of hamstring strain injury display lower levels of surface EMG (sEMG) activity and median power frequency in the previously injured hamstring muscle during maximal voluntary contractions. Recreational athletes were recruited, 13 with a history of unilateral hamstring strain injury and 15 without prior injury. All athletes undertook isokinetic dynamometry testing of the knee flexors and sEMG assessment of the biceps femoris long head (BF) and medial hamstrings (MH) during concentric and eccentric contractions at ± 180 and ± 600.s-1. The knee flexors on the previously injured limb were weaker at all contraction speeds compared to the uninjured limb (+1800.s-1 p = 0.0036; +600.s-1 p = 0.0013; -600.s-1 p = 0.0007; -1800.s-1 p = 0.0007) whilst sEMG activity was only lower in the BF during eccentric contractions (-600.s-1 p = 0.0025; -1800.s-1 p = 0.0003). There were no between limb differences in MH sEMG activity or median power frequency from either BF or MH in the injured group. The uninjured group showed no between limb differences in any of the tested variables. Secondary analysis comparing the between limb difference in the injured and the uninjured groups, confirmed that previously injured hamstrings were mostly weaker (+1800.s-1 p = 0.2208; +600.s-1 p = 0.0379; -600.s-1 p = 0.0312; -1800.s-1 p = 0.0110) and that deficits in sEMG were confined to the BF during eccentric contractions (-600.s-1 p = 0.0542; -1800.s-1 p = 0.0473) Previously injured hamstrings were weaker and BF sEMG activity was lower than the contralateral uninjured hamstring. This has implications for hamstring strain injury prevention and rehabilitation which should consider altered neural function following hamstring strain injury.
Resumo:
In many countries, governments and health agencies are strongly promoting physical activity as a means to prevent the accumulation of fatness that leads to weight gain and obesity. However, there is often a resistance to respond to health promotion initiatives. For example, in the UK, the Chief Medical Officer has recently reported that 71% of women and 61% of men fail to carry out even the minimal amount of physical activity recommended in the government’s guidelines. Similarly, the Food safety Agency has promoted reductions in the intake of fat, sugar and salt but with very little impact on the pattern of consumption. Why is it that recommendations to improve health are so difficult to implement, and produce the desired outcome?
Resumo:
Recent analyses of population data reveal that obesity rates continue to rise, and are projected to reach unprecedented levels over the next decade 1. Despite concerted efforts to impede obesity progression, as of today, weight loss and weight maintenance strategies remain at best partially successful endeavours. Regardless of the observation that weight loss strategies can produce significant weight loss 2 and substantial improvements of the determinants of the metabolic risk profile 3, 4, it is clear that actual weight loss tends to be lower than the anticipated weight loss, and most individuals who achieve weight loss will likely regain some weight 5 and even overshoot 6 their pre-intervention body weight. As such, an improved understanding of the factors that contribute to lower than expected weight loss, and poor weight maintenance would improve the effectiveness of weight loss interventions.
Resumo:
Background: Hamstring strain injuries are prevalent in sport and re-injury rates have been high for many years. Whilst much focus has centred on the impact of previous hamstring strain injury on maximal eccentric strength, high rates of torque development is also of interest, given the important role of the hamstrings during the terminal swing phase of running. The impact of prior strain injury on myoelectrical activity of the hamstrings during tasks requiring high rates of torque development has received little attention. Purpose: To determine if recreational athletes with a history of unilateral hamstring strain injury, who have returned to training and competition, will exhibit lower levels of myoelectrical activity during eccentric contraction, rate of torque development and impulse 30, 50 and 100ms after the onset of myoelectrical activity or torque development in the previously injured limb compared to the uninjured limb. Study design: Case-control study Methods: Twenty-six recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring strain injury (all confined to biceps femoris long head) and 13 had no history of hamstring strain injury. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during eccentric contractions at -60 and -1800.s-1. Results: In the injured limb of the injured group, compared to the contralateral uninjured limb rate of torque development and impulse was lower during -600.s-1 eccentric contractions at 50 (RTD, injured limb = 312.27 ± 191.78Nm.s-1 vs. uninjured limb = 518.54 ± 172.81Nm.s-1, p=0.008; IMP, injured limb = 0.73 ± 0.30 Nm.s vs. uninjured limb = 0.97 ± 0.23 Nm.s, p=0.005) and 100ms (RTD, injured limb = 280.03 ± 131.42Nm.s-1 vs. uninjured limb = 460.54.54 ± 152.94Nm.s-1,p=0.001; IMP, injured limb = 2.15 ± 0.89 Nm.s vs. uninjured limb = 3.07 ± 0.63 Nm.s, p<0.001) after the onset of contraction. Biceps femoris long head muscle activation was lower at 100ms at both contraction speeds (-600.s-1, normalised iEMG activity (x1000), injured limb = 26.25 ± 10.11 vs. uninjured limb 33.57 ± 8.29, p=0.009; -1800.s-1, normalised iEMG activity (x1000), injured limb = 31.16 ± 10.01 vs. uninjured limb 39.64 ± 8.36, p=0.009). Medial hamstring activation did not differ between limbs in the injured group. Comparisons in the uninjured group showed no significant between limbs difference for any variables. Conclusion: Previously injured hamstrings displayed lower rate of torque development and impulse during slow maximal eccentric contraction compared to the contralateral uninjured limb. Lower myoelectrical activity was confined to the biceps femoris long head. Regardless of whether these deficits are the cause of or the result of injury, these findings could have important implications for hamstring strain injury and re-injury. Particularly, given the importance of high levels of muscle activity to bring about specific muscular adaptations, lower levels of myoelectrical activity may limit the adaptive response to rehabilitation interventions and suggest greater attention be given to neural function of the knee flexors following hamstring strain injury.
Resumo:
Hamstring strain injuries are amongst the most common and problematic injuries in a wide range of sports that involve high speed running. The comparatively high rate of hamstring injury recurrence is arguably the most concerning aspect of these injuries. A number of modifiable and nonmodifiable risk factors are proposed to predispose athletes to hamstring strains. Potentially, the persistence of risk factors and the development of maladaptations following injury may explain injury recurrence. Here, the role of neuromuscular inhibition following injury is discussed as a potential mechanism for several maladaptations associated with hamstring re-injury. These maladaptations include eccentric hamstring weakness, selective hamstring atrophy and shifts in the knee flexor torque-joint angle relationship. Current evidence indicates that athletes return to competition after hamstring injury having developed maladaptations that predispose them to further injury. When rehabilitating athletes to return to competition following hamstring strain injury, the role of neuromuscular inhibition in re-injury should be considered.
Resumo:
INTRODUCTION: Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is often greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. AIM: To determine if this preferential eccentric decline in strength is caused by declines in voluntary hamstring muscle activation. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±1800.s-1 and ±600.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused greater eccentric (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) than concentric knee flexor weakness (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, voluntary activation levels of the lateral hamstrings showed a significant decline (0.08%; 95% CI = 0.045 to 0.120; P<0.0001). In comparison, medial hamstring activation showed no change following intermittent running. CONCLUSION: Eccentric hamstring strength is decreased significantly following intermittent overground running. Voluntary activation deficits in the biceps femoris muscle are responsible for some portion of this weakness. The implications of this finding are significant because the biceps femoris muscle is the most frequently strained of all the hamstring muscles and because fatigue appears to play an important part in injury occurrence.
Resumo:
Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Intermittent running has been shown to result in preferential reductions in eccentric hamstring strength, which increase the risk of sustaining a HSI. The eccentric specific nature of this decline in hamstring function implicates central mechanisms, as peripheral fatigue mechanisms tend to impact upon both concentric and eccentric contractions modes. However, neural function of the hamstrings, such as the median power frequency (MPF) of the surface electromyography signal has yet to be examined in the fatigued hamstring following intermittent sprint running. AIM: To determine the impact of fatigue induced by intermittent sprinting on the MPF of the medial and lateral hamstring muscles. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±180.s-1 and ±60.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused a significant reduction in eccentric knee flexor strength (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) but not concentric strength (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, MPF of the lateral hamstrings showed a significant decline eccentrically (0.86; 95% CI = 0.59 to 1.54; P=0.038) and concentrically (0.76; 95%CI = 0.66 to 0.83; P=0.039). Similar declines in MPF were also noted in the medial hamstrings eccentrically (1.54; 95% CI = 0.59 to 7.9; P=0.005) and concentrically (1.18; 95% CI = 0.44 to 6.8; P=0.040). CONCLUSION: Whilst sprint running induced fatigue led to a eccentric specific reduction in knee flexor torque, MPF was suppressed across both contraction modes. This would indicate that factors associated with the decline in MPF do not appear to explain the contraction mode-specific loss of strength after intermittent sprints. This would implicate other central mechanisms, such as declines in voluntary activation, in explaining the eccentric specific decline in strength seen following sprint running.