969 resultados para Human Machine Interfaces
Resumo:
Purpose: To assess the influence of ozone gas and ozonated water application to prepared cavity and bonded interfaces on the resin/dentin bond strength of two-step etch-and-rinse adhesive systems (Adper Single Bond 2 [SB2] and XP-Bond [XP]). Materials and Methods: Sixty extracted human third molars were sectioned perpendicularly to their long axes to expose flat occlusal dentin surfaces. In experiment 1, dentin was treated with ozone before the bonding procedure, while in experiment 2, ozone was applied to resin/dentin bonded interfaces. In experiment 1, dentin surfaces were treated either with ozone gas (2100 ppm), ozonated water (3.5 ppm), or distilled water for 120 s, and then bonded with SB2 or XP according to manufacturers' instructions. Hybrid composite buildups were incrementally constructed and the teeth were sectioned into resin-dentin sticks (0.8 mm(2)). In experiment 2, dentin surfaces were first bonded with SB2 or XP, composite buildups were constructed, and bonded sticks obtained. The sticks were treated with ozone as previously described. Bonded sticks were tested under tensile stress at 1 mm/min. Silver nitrate impregnation along the resin/dentin interfaces was also evaluated under SEM. Results: Two-way ANOVA (adhesive and ozone treatment) detected no significant effect for the cross-product interaction and the main factors in the two experiments (p > 0.05), which was confirmed by the photomicrographs. Conclusion: Ozone gas and ozonated water used before the bonding procedure or on resin/dentin bonded interfaces have no deleterious effects on the bond strengths and interfaces.
Resumo:
Abstract Background Recent medical and biological technology advances have stimulated the development of new testing systems that have been providing huge, varied amounts of molecular and clinical data. Growing data volumes pose significant challenges for information processing systems in research centers. Additionally, the routines of genomics laboratory are typically characterized by high parallelism in testing and constant procedure changes. Results This paper describes a formal approach to address this challenge through the implementation of a genetic testing management system applied to human genome laboratory. We introduced the Human Genome Research Center Information System (CEGH) in Brazil, a system that is able to support constant changes in human genome testing and can provide patients updated results based on the most recent and validated genetic knowledge. Our approach uses a common repository for process planning to ensure reusability, specification, instantiation, monitoring, and execution of processes, which are defined using a relational database and rigorous control flow specifications based on process algebra (ACP). The main difference between our approach and related works is that we were able to join two important aspects: 1) process scalability achieved through relational database implementation, and 2) correctness of processes using process algebra. Furthermore, the software allows end users to define genetic testing without requiring any knowledge about business process notation or process algebra. Conclusions This paper presents the CEGH information system that is a Laboratory Information Management System (LIMS) based on a formal framework to support genetic testing management for Mendelian disorder studies. We have proved the feasibility and showed usability benefits of a rigorous approach that is able to specify, validate, and perform genetic testing using easy end user interfaces.
Resumo:
Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)
Resumo:
[EN]Perceptual User Interfaces (PUIs) aim at facilitating human-computer interaction with the aid of human-like capacities (computer vision, speech recognition, etc.). In PUIs, the human face is a central element, since it conveys not only identity but also other important information, particularly with respect to the user’s mood or emotional state. This paper describes both a face detector and a smile detector for PUIs. Both are suitable for real-time interaction.
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.
Resumo:
Il cancro della prostata (PCa) è il tumore maligno non-cutaneo più diffuso tra gli uomini ed è il secondo tumore che miete più vittime nei paesi occidentali. La necessità di nuove tecniche non invasive per la diagnosi precoce del PCa è aumentata negli anni. 1H-MRS (proton magnetic resonance spectroscopy) e 1H-MRSI (proton magnetic resonance spectroscopy imaging) sono tecniche avanzate di spettroscopia in risonanza magnetica che permettono di individuare presenza di metaboliti come citrato, colina, creatina e in alcuni casi poliammine in uno o più voxel nel tessuto prostatico. L’abbondanza o l’assenza di uno di questi metaboliti rende possibile discriminare un tessuto sano da uno patologico. Le tecniche di spettroscopia RM sono correntemente utilizzate nella pratica clinica per cervello e fegato, con l’utilizzo di software dedicati per l’analisi degli spettri. La quantificazione di metaboliti nella prostata invece può risultare difficile a causa del basso rapporto segnale/rumore (SNR) degli spettri e del forte accoppiamento-j del citrato. Lo scopo principale di questo lavoro è di proporre un software prototipo per la quantificazione automatica di citrato, colina e creatina nella prostata. Lo sviluppo del programma e dei suoi algoritmi è stato portato avanti all’interno dell’IRST (Istituto Romagnolo per lo Studio e la cura dei Tumori) con l’aiuto dell’unità di fisica sanitaria. Il cuore del programma è un algoritmo iterativo per il fit degli spettri che fa uso di simulazioni MRS sviluppate con il pacchetto di librerie GAMMA in C++. L’accuratezza delle quantificazioni è stata testata con dei fantocci realizzati all’interno dei laboratori dell’istituto. Tutte le misure spettroscopiche sono state eseguite con il nuovo scanner Philips Ingenia 3T, una delle machine di risonanza magnetica più avanzate per applicazioni cliniche. Infine, dopo aver eseguito i test in vitro sui fantocci, sono stati acquisiti gli spettri delle prostate di alcuni volontari sani, per testare se il programma fosse in grado di lavorare in condizioni di basso SNR.
Resumo:
The aim of the study was to assess the thickness of softened enamel removed by toothbrushing. Human enamel specimens were indented with a Knoop diamond. Softening was performed with citric acid or orange juice. The specimens were brushed in a brushing machine with a manual soft toothbrush in toothpaste slurry or in artificial saliva. Enamel loss was calculated from the change in indentation depth of the same indent before and after abrasion. Mean surface losses (95% confidence interval) were recorded in treatment groups (in nanometers): (1) citric acid, abrasion with slurry = 339 (280-398); (2) citric acid, abrasion with artificial saliva = 16 (5-27); (3) orange juice, abrasion with slurry = 268 (233-303); (4) orange juice, abrasion with artificial saliva = 14 (5-23); (5) no softening, abrasion with slurry = 28 (10-46). The calculated thickness of the softened enamel varied between 254 and 323 nm, depending on the acid used.
Resumo:
Little is known about the genes and proteins involved in the process of human memory. To identify genetic factors related to human episodic memory performance, we conducted an ultra-high-density genome-wide screen at > 500 000 single nucleotide polymorphisms (SNPs) in a sample of normal young adults stratified for performance on an episodic recall memory test. Analysis of this data identified SNPs within the calmodulin-binding transcription activator 1 (CAMTA1) gene that were significantly associated with memory performance. A follow up study, focused on the CAMTA1 locus in an independent cohort consisting of cognitively normal young adults, singled out SNP rs4908449 with a P-value of 0.0002 as the most significant associated SNP in the region. These validated genetic findings were further supported by the identification of CAMTA1 transcript enrichment in memory-related human brain regions and through a functional magnetic resonance imaging experiment on individuals matched for memory performance that identified CAMTA1 allele-specific upregulation of medial temporal lobe brain activity in those individuals harboring the 'at-risk' allele for poorer memory performance. The CAMTA1 locus encodes a purported transcription factor that interfaces with the calcium-calmodulin system of the cell to alter gene expression patterns. Our validated genomic and functional biological findings described herein suggest a role for CAMTA1 in human episodic memory.
Resumo:
OBJECTIVE: The purpose of this study was to adapt and improve a minimally invasive two-step postmortem angiographic technique for use on human cadavers. Detailed mapping of the entire vascular system is almost impossible with conventional autopsy tools. The technique described should be valuable in the diagnosis of vascular abnormalities. MATERIALS AND METHODS: Postmortem perfusion with an oily liquid is established with a circulation machine. An oily contrast agent is introduced as a bolus injection, and radiographic imaging is performed. In this pilot study, the upper or lower extremities of four human cadavers were perfused. In two cases, the vascular system of a lower extremity was visualized with anterograde perfusion of the arteries. In the other two cases, in which the suspected cause of death was drug intoxication, the veins of an upper extremity were visualized with retrograde perfusion of the venous system. RESULTS: In each case, the vascular system was visualized up to the level of the small supplying and draining vessels. In three of the four cases, vascular abnormalities were found. In one instance, a venous injection mark engendered by the self-administration of drugs was rendered visible by exudation of the contrast agent. In the other two cases, occlusion of the arteries and veins was apparent. CONCLUSION: The method described is readily applicable to human cadavers. After establishment of postmortem perfusion with paraffin oil and injection of the oily contrast agent, the vascular system can be investigated in detail and vascular abnormalities rendered visible.
Resumo:
Activation of the peroxisome proliferator-activated receptor alpha (PPARalpha) is associated with increased fatty acid catabolism and is commonly targeted for the treatment of hyperlipidemia. To identify latent, endogenous biomarkers of PPARalpha activation and hence increased fatty acid beta-oxidation, healthy human volunteers were given fenofibrate orally for 2 weeks and their urine was profiled by UPLC-QTOFMS. Biomarkers identified by the machine learning algorithm random forests included significant depletion by day 14 of both pantothenic acid (>5-fold) and acetylcarnitine (>20-fold), observations that are consistent with known targets of PPARalpha including pantothenate kinase and genes encoding proteins involved in the transport and synthesis of acylcarnitines. It was also concluded that serum cholesterol (-12.7%), triglycerides (-25.6%), uric acid (-34.7%), together with urinary propylcarnitine (>10-fold), isobutyrylcarnitine (>2.5-fold), (S)-(+)-2-methylbutyrylcarnitine (5-fold), and isovalerylcarnitine (>5-fold) were all reduced by day 14. Specificity of these biomarkers as indicators of PPARalpha activation was demonstrated using the Ppara-null mouse. Urinary pantothenic acid and acylcarnitines may prove useful indicators of PPARalpha-induced fatty acid beta-oxidation in humans. This study illustrates the utility of a pharmacometabolomic approach to understand drug effects on lipid metabolism in both human populations and in inbred mouse models.
Resumo:
Electronic apppliances are increasingly a part of our everyday lives. In particular, mobile devices, with their reduced dimensions with power rivaling desktop computers, have substantially augmented our communication abilities offering instant availability, anywhere, to everyone. These devices have become essential for human communication but also include a more comprehensive tool set to support productivity and leisure applications. However, the many applications commonly available are not adapted to people with special needs. Rather, most popular devices are targeted at teenagers or young adults with excellent eyesight and coordination. What is worse, most of the commonly used assistive control interfaces are not available in a mobile environment where user's position, accommodation and capacities can vary even widely. To try and address people with special needs new approaches and techniques are sorely needed. This paper presents a control interface to allow tetraplegic users to interact with electronic devices. Our method uses myographic information (Electromyography or EMG) collected from residually controlled body areas. User evaluations validate electromyography as a daily wearable interface. In particular our results show that EMG can be used even in mobility contexts.
Resumo:
This paper presents a shallow dialogue analysis model, aimed at human-human dialogues in the context of staff or business meetings. Four components of the model are defined, and several machine learning techniques are used to extract features from dialogue transcripts: maximum entropy classifiers for dialogue acts, latent semantic analysis for topic segmentation, or decision tree classifiers for discourse markers. A rule-based approach is proposed for solving cross-modal references to meeting documents. The methods are trained and evaluated thanks to a common data set and annotation format. The integration of the components into an automated shallow dialogue parser opens the way to multimodal meeting processing and retrieval applications.
Resumo:
This paper describes a preprocessing module for improving the performance of a Spanish into Spanish Sign Language (Lengua de Signos Espanola: LSE) translation system when dealing with sparse training data. This preprocessing module replaces Spanish words with associated tags. The list with Spanish words (vocabulary) and associated tags used by this module is computed automatically considering those signs that show the highest probability of being the translation of every Spanish word. This automatic tag extraction has been compared to a manual strategy achieving almost the same improvement. In this analysis, several alternatives for dealing with non-relevant words have been studied. Non-relevant words are Spanish words not assigned to any sign. The preprocessing module has been incorporated into two well-known statistical translation architectures: a phrase-based system and a Statistical Finite State Transducer (SFST). This system has been developed for a specific application domain: the renewal of Identity Documents and Driver's License. In order to evaluate the system a parallel corpus made up of 4080 Spanish sentences and their LSE translation has been used. The evaluation results revealed a significant performance improvement when including this preprocessing module. In the phrase-based system, the proposed module has given rise to an increase in BLEU (Bilingual Evaluation Understudy) from 73.8% to 81.0% and an increase in the human evaluation score from 0.64 to 0.83. In the case of SFST, BLEU increased from 70.6% to 78.4% and the human evaluation score from 0.65 to 0.82.
Resumo:
Facilitating general access to data from sensor networks (including traffic, hydrology and other domains) increases their utility. In this paper we argue that the journalistic metaphor can be effectively used to automatically generate multimedia presentations that help non-expert users analyze and understand sensor data. The journalistic layout and style are familiar to most users. Furthermore, the journalistic approach of ordering information from most general to most specific helps users obtain a high-level understanding while providing them the freedom to choose the depth of analysis to which they want to go. We describe the general characteristics and architectural requirements for an interactive intelligent user interface for exploring sensor data that uses the journalistic metaphor. We also describe our experience in developing this interface in real-world domains (e.g., hydrology).