951 resultados para Hot air drying
Resumo:
The high-speed combustible gas ignited by a hot gas jet, which is induced by shock focusing, was experimentally investigated. By use of the separation mode of shock tube, the test section of a single shock tube is split into two parts, which provide the high-speed flow of combustible gas and pilot flame of hot gas jet, respectively. In the interface of two parts of test sections the flame of jet was formed and spread to the high-speed combustible gas. Two kinds of the ignitions, 3-D "line-flame ignition" and 2-D "plane-flame ignition", were investigated. In the condition of 3-D "line-flame ignition" of combustion, thicker hot gas jet than pure air jet, was observed in schlieren photos. In the condition of 2-D "plane-flame ignition" of combustion, the delay time of ignition and the angle of flame front in schlieren photos were measured, from which the velocity of flame propagation in the high-speed combustible gas is estimated in the range of 30-90m/s and the delay time of ignition is estimated in the range of 0.12-0.29ms.
Resumo:
Flames propagating through a mixture with a gradient of equivalence ratio have been previously demonstrated to travel faster or slower than their equivalent premixed flames. The present study aims to numerically investigate the response of strained laminar methane-air flames to such gradients. The flames are simulated in a counterflow configuration where a premixed reactant stream at equivalence ratio φR opposes a hot equilibrium stream at equivalence ratio φP. Premixed and stratified flames are compared with respect to the equivalence ratio φ* and the corresponding gradient ∇φ* at the point of peak heat release rate, for three strain rates, a=50, 300 and 500s-1 and a range of φ*. The effect of different stratification levels is also investigated by varying the ratio of φP to φR, Θ. Results indicate that, as long as flames stabilize within the diffusion layer and Θ>1, increased heat release rate Q is seen throughout the progress variable space in comparison to the premixed state. In contrast, an attenuation of heat release rate is seen for Θ<1. The enhancement (or attenuation) of heat release varies monotonically with Θ. The effect of stratification on flame behavior becomes more pronounced as the strain rate increases. The present study reveals the mechanisms for the propagation of quasi-steady stratified flames under lean and rich conditions: stratified flames are primarily dominated by the diffusion of heat under lean conditions, and diffusion of H2 under rich conditions. Thanks to species and thermal support, stratified flames continue to burn beyond the premixed lean and rich flammability limits. Further investigation on the unsteady response of flames to the fluctuating equivalence ratio implies that the steady results represent the unsteady response well, as long as φ* and ∇φ* are similar in both steady and unsteady cases. © 2013 The Combustion Institute.
Resumo:
Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get high quality 4H-SiC epilayers. Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates purchased from Cree is performed at a typical temperature of 1500 degrees C with a pressure of 40 Torr by using SiH4+C2H4+H-2 gas system. The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope, atomic force microscopy (AFM), x-ray diffraction, Raman scattering, and low temperature photoluminescence (LTPL). The background doping of 32 pm-thick sample has been reduced to 2-5 x 10(15) cm(-3). The FWHM of the rocking curve is 9-16 arcsec. Intentional N-doped and B-doped 4H-SiC epilayers are obtained by in-situ doping of NH3 and B2H6, respectively. Schottky barrier diodes with reverse blocking voltage of over 1000 V are achieved preliminarily.
Resumo:
Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get highly qualitical 4H-SiC epilayers.Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates is performed at 1500℃ with a pressure of 1.3×103Pa by using the step-controlled epitaxy.The growth rate is controlled to be about 1.0μm/h.The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope,atomic force microscopy (AFM),X-ray diffraction,Raman scattering,and low temperature photoluminescence (LTPL).N-type 4H-SiC epilayers are obtained by in-situ doping of NH3 with the flow rate ranging from 0.1 to 3sccm.SiC p-n junctions are obtained on these epitaxial layers and their electrical and optical characteristics are presented.The obtained p-n junction diodes can be operated at the temperature up to 400℃,which provides a potential for high-temperature applications.
Resumo:
Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I). The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere) database (https://halocat.geomar.de/). Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1 degrees x 1 degrees grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr(-1) for CHBr3, 0.78/0.98 Gmol Br yr(-1) for CH2Br2 and 1.24/1.45 Gmol Br yr(-1) for CH3I (robust fit/ordinary least squares regression techniques). Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the subtropical gyre regions. Inter-annual and seasonal variation is contained within our flux calculations for all three compounds. Compared to earlier studies, our global fluxes are at the lower end of estimates, especially for bromoform. An under-representation of coastal emissions and of extreme events in our estimate might explain the mismatch between our bottom-up emission estimate and top-down approaches.
Resumo:
In the manufacture of granular NPK fertilizer the product is cooled before packaging and storage in moisture-proof bags. It has been shown that the temperature of the fertilizer prior to packing is significant in that at high temperatures, drying of the granules takes place in the bag which causes an increase in the humidity of the air surrounding the granules and thus an increase in moisture content at the granule - granule interface. This surface moisture was shown to increase the likelihood of agglomeration in the fertilizer by a capillary adhesion/unconfined yield stress model. An iterative model was set up to establish conditions that would prevent drying occurring, which takes into account fertilizer drying rate, fertilizer cooling rate cooling rate and the effect of coating oils on the drying mechanism.
Resumo:
Cationic dyes, such as methylene blue (MB), Thionine (TH) and Basic Fuschin (BF), but not anionic dyes, such as Acid Orange 7 (AO7), Acid Blue 9 (AB9) and Acid Fuschin (AF), are readily adsorbed onto mesoporous titania films at high pH (pH 11), i.e. well above the pzc of titania (pH 6.5), due to electrostatic forces of attraction and repulsion, respectively. The same anionic dyes, but not the cationic dyes, are readily adsorbed on the same titania films at low pH (pH 3), i.e. well below titania's pzc. MB appears to adsorb on mesoporous titania films at pH 11 as the trimer (lambda(max) = 570 nm) but, upon drying, although the trimer still dominates, there is an absorption peak at 665 nm, especially notable at low [MB], which may be due to the monomer, but more likely MB J-aggregates. In contrast, the absorption spectrum of AO7 adsorbed onto the mesoporous titania film at low pH is very similar to the dye monomer. For both MB and AO7 the kinetics of adsorption are first order and yield high rate constants (3.71 and 1.481 g(-1) min(-1)), indicative of a strong adsorption process. Indeed, both MB and AO7 stained films retained much of their colour when left overnight in dye-free pH 11 and 3 solutions, respectively, indicating the strong nature of the adsorption. The kinetics of the photocatalytic bleaching of the MB-titania films at high pH are complex and not well-described by the Julson-Ollis kinetic model [A.J. Julson, D.F. Ollis, Appl. Catal. B. 65 (2006) 315]. Instead, there appears to be an initial fast but not simple demethylation step, followed by a zero-order bleaching and further demethylation steps. In contrast, the kinetics of photocatalytic bleaching of the AO7-titania film give a good fit to the Julson-Ollis kinetic model, yielding values for the various fitting parameters not too dissimilar to those reported for AO7 adsorbed on P25 titania powder. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
While on site measurement of air permeability provides a useful approach for assessing the likely long term durability of concrete structures, no existing test method is capable of effectively determining the relative permeability of high performance concrete (HPC). Lack of instrument sensitivity and the influence of concrete moisture are proposed as two key reasons for this phenomenon. With limited systematic research carried out in this area to date, the aim if this study was to investigate the influence of instrument sensitivity and moisture condition on air permeability measurements for both normal concrete and HPC. To achieve a range of moisture conditions, samples were dried initially for between one and 5 weeks and then sealed in polythene sheeting and stored in an oven at 50 C to internally distribute moisture evenly. Moisture distribution was determined throughout using relative humidity probe and electrical resistance measurements. Concrete air permeability was subsequently measured using standardised air permeability (Autoclam) and water penetration (BS EN: 12390-8) tests to assess differences between the HPCs tested in this study. It was found that for both normal and high performance concrete, the influence of moisture on Autoclam air permeability results could be eliminated by pre-drying (50 ± 1 C, RH 35%) specimens for 3 weeks. While drying for 5 weeks alone was found not to result in uniform internal moisture distributions, this state was achieved by exposing specimens to a further 3 weeks of sealed pre-conditioning at 50 ± 1 C. While the Autoclam test was not able to accurately identify relative HPC quality due to low sensitivity at associated performance levels, an effective preconditioning procedure to obtain reliable air permeability of HPC concretes was identified. © 2013 The Authors
Resumo:
Thermal barrier coatings (TBCs) are widely adopted to protect mechanical components in gas turbine engines operating at high temperature. Basically, the surface temperature of these components must be low enough to retain material properties within acceptable bounds and to extend component life. From this standpoint, air plasma-sprayed (APS) ceria and yttria co-stabilized zirconia (CYSZ) is particularly promising because it provides enhanced thermal insulation capabilities and resistance to hot corrosion. However, essential mechanical properties, such as hardness and Young's modulus, have been less thoroughly investigated. Knowledge of Young's modulus is of concern because it has a significant effect on strain tolerance and stress level and, hence, on durability. The focus of the present study was to determine the mechanical properties of APS CYSZ coatings. In particular, X-ray diffraction (XRD) is adopted for phase analysis of powders and as-sprayed coatings. In addition, scanning electron microscopy (SEM) and image analysis (IA) are employed to explore coating microstructure and porosity. Finally, the Young's modulus of the coating is determined using nanoindentation and a resonant method. The results obtained are then discussed and a cross-check on their consistency is carried out by resorting to a micromechanical model. © 2010 Blackwell Publishing Ltd.
Resumo:
The overall aim of the project was to study the influence of process variables on the distribution of a model active pharmaceutical ingredient (API) during fluidised melt granulation of pharmaceutical granules with a view of optimising product characteristics. Granules were produced using common pharmaceutical excipients; lactose monohydrate using poly ethylene glycol (PEG1500) as a meltable binder. Methylene blue was used as a model API. Empirical models relating the process variables to the granules properties such as granule mean size, product homogeneity and granule strength were developed using the design of experiment approach. Fluidising air velocity and fluidising air temperature were shown to strongly influence the product properties. Optimisation studies showed that strong granules with homogeneous distribution of the active ingredient can be produced at high fluidising air velocity and at high fluidising air temperatures.
Resumo:
The injection stretch blow moulding process involves the inflation and stretching of a hot preform into a mould to form bottles. A critical process variable and an essential input for process simulations is the rate of pressure increase within the preform during forming, which is regulated by an air flow restrictor valve. The paper describes a set of experiments for measuring the air flow rate within an industrial ISBM machine and the subsequent modelling of it with the FEA package ABAQUS. Two rigid containers were inserted into a Sidel SBO1 blow moulding machine and subjected to different supply pressures and air flow restrictor settings. The pressure and air temperature were recorded for each experiment enabling the mass flow rate of air to be determined along with an important machine characteristic known as the ‘dead volume’. The experimental setup was simulated within the commercial FEA package ABAQUS/Explicit using a combination of structural, fluid and fluid link elements that idealize the air flowing through an orifice behaving as an ideal gas under isothermal conditions. Results between experiment and simulation are compared and show a good correlation.
Resumo:
The formulation of BCS Class II drugs as amorphous solid dispersions has been shown to provide advantages with respect to improving the aqueous solubility of these compounds. While hot melt extrusion (HME) and spray drying (SD) are among the most common methods for the production of amorphous solid dispersions (ASDs), the high temperatures often required for HME can restrict the processing of thermally labile drugs, while the use of toxic organic solvents during SD can impact on end-product toxicity. In this study, we investigated the potential of supercritical fluid impregnation (SFI) using carbon dioxide as an alternative process for ASD production of a model poorly water-soluble drug, indomethacin (INM). In doing so, we produced ASDs without the use of organic solvents and at temperatures considerably lower than those required for HME. Previous studies have concentrated on the characterization of ASDs produced using HME or SFI but have not considered both processes together. Dispersions were manufactured using two different polymers, Soluplus and polyvinylpyrrolidone K15 using both SFI and HME and characterized for drug morphology, homogeneity, presence of drug-polymer interactions, glass transition temperature, amorphous stability of the drug within the formulation, and nonsink drug release to measure the ability of each formulation to create a supersaturated drug solution. Fully amorphous dispersions were successfully produced at 50% w/w drug loading using HME and 30% w/w drug loading using SFI. For both polymers, formulations containing 50% w/w INM, manufactured via SFI, contained the drug in the γ-crystalline form. Interestingly, there were lower levels of crystallinity in PVP dispersions relative to SOL. FTIR was used to probe for the presence of drug-polymer interactions within both polymer systems. For PVP systems, the nature of these interactions depended upon processing method; however, for Soluplus formulations this was not the case. The area under the dissolution curve (AUC) was used as a measure of the time during which a supersaturated concentration could be maintained, and for all systems, SFI formulations performed better than similar HME formulations.
Resumo:
Glazed Double Skin Facades (DSF) offer the potential to improve the performance of all-glass building skins, common to commercial office buildings in which full facade glazing has almost become the standard. Single skin glazing results in increased heating and cooling costs over opaque walls, due to lower thermal resistance of glass, and the increased impact of solar gain through it. However, the performance benefit of DSF technology continues to be questioned and its operation poorly understood, particularly the nature of airflow through the cavity. This paper deals specifically with the experimental analysis of the air flow characteristics in an automated double skin façade. The benefit of the DSF as a thermal buffer, and to limit overheating is evaluated through analysis of an extensive set of parameters including air and surface temperatures at each level in the DSF, airflow readings in the cavity and at the inlet and outlet, solar and wind data, and analytically derived pressure differentials. The temperature and air-flow are monitored in the cavity of a DSF using wireless sensors and hot wire anemometers respectively. Automated louvre operation and building set-points are monitored via the BMS. Thermal stratification and air flow variation during changing weather conditions are shown to effect the performance of the DSF considerably and hence the energy performance of the building. The relative pressure effects due to buoyancy and wind are analysed and quantified. This research aims to developed and validate models of DSFs in the maritime climate, using multi-season data from experimental monitoring. This extensive experimental study provides data for training and validation of models.
Resumo:
Background: Having previously investigated the dispersal by different hand drying methods of a chemical indicator, fungi and bacteria on the hands of users, this new study assessed the potential for viral dispersal. Aims/Objectives: To determine differences between hand drying methods in their capacity to disperse viruses on the hands of users to other occupants of public washrooms and into the washroom environment. Method: A harmless virus was used to artificially contaminate the hands of participants prior to using three different hand drying devices (jet air dryer, warm air dryer, paper towel dispenser). Viral dispersal was assessed at different heights and distances from the hand drying devices and also at different times after use by means of an air sampler. Results: The jet air dryer was shown to produce significantly more dispersal of virus than the warm air dryer or paper towels. After use of the jet air dryer, high numbers of virus were detected at a range of heights with maximum numbers between 0.61 and 1.22 metres. Virus was also detected at distances of up to 3 metres from the jet air dryer and in the air for up to 15 minutes after its use. The warm air dryer and paper towel dispenser produced low or zero viral counts at different heights, different distances and times after use. Conclusion: Jet air dryers have a greater potential than other hand drying methods to disperse viruses on the hands and contaminate other occupants of a public washroom and the washroom environment.