957 resultados para High-energy attrition mill


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the isospin- and momentum-dependent transport model IBUU04, the transverse momentum distributions of the free neutron-proton ratio in the Sn-132+(124) Sn reaction system at mid-central collisions with beam energies of 400/A MeV, 600/A MeV and 800/A MeV are studied by using two different symmetry energies. It is found that the free neutron-proton ratio as a function of the transverse momentum at the mid-rapidity is very sensitive to the density dependency of the symmetry energy especially at incident energies around 400/AMeV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the isospin- and momentum-dependent transport model IBUU04, we calculated the reaction of the Sn-132+Sn-124 systems in semi-central collisions at beam energies of 400/A MeV, 600/A MeV and 800/A MeV by adopting two different density dependent symmetry energies. It was found that the proton differential elliptic flow as a function of transverse momentum is quite sensitive to the density dependence of symmetry energy, especially for the considered beam energy range. Therefore the proton differential elliptic flow may be considered as a robust probe for investigating the high density behavior of symmetry energy in intermediate energy heavy ion collisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within a transport model it is shown that the neutron/proton ratio of squeezed-out nucleons perpendicular to the reaction plane, especially at high transverse momenta, in heavy-ion reactions induced by high energy neutron-rich nuclei can be a useful tool for studying the high density behavior of the nuclear symmetry energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dielectric properties of BaTiO3 thin films and multilayers are different from bulk materials because of nanoscale dimensions, interfaces, and stress-strain conditions. In this study, BaTiO3/SrTiO3 multilayers deposited on SrTiO3 substrates by pulsed laser deposition have been investigated by high-energy-resolution electron energy-loss spectroscopy. The fine structures in the spectra are discussed in terms of crystal-field splitting and the internal strain. The crystal-field splitting of the BaTiO3 thin layer is found to be a little larger than that of bulk BaTiO3, which has been interpreted by the presence of the internal strain induced by the misfit at the interface. This finding is consistent with the lattice parameters of the BaTiO3 thin layer determined by the selected area diffraction pattern. The near-edge structure of the oxygen K edge in BaTiO3 thin layers and in bulk BaTiO3 are simulated by first-principle self-consistent full multiple-scattering calculations. The results of the simulations are in a good agreement with the experimental results. Moreover, the aggregation of oxygen vacancies at the rough BaTiO3/SrTiO3 interface is indicated by the increased [Ti]/[O] element ratio, which dominates the difference of dielectric properties between BaTiO3 layer and bulk materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Locomotion is central to behavior and intrinsic to many fitnesscritical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from postural costs (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S males might partly explain the apparent selection limit for wheel running observed for over 15 generations. © 2009 by The University of Chicago. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Photocatalyst ceramic powder that presented high photoactivity based on TiO2 modified with 25% molar of SnO2 and up to 5% molar of Ag2O was obtained in the present work. The aforementioned ceramic powder was obtained using all commercial oxides as well as the oxides mixture technique. The powders were ground in high energy mill for one hour with subsequent thermal treatment at 400°C for four hours. They were, furthermore, characterized using surface area of around 6m2/g, where the X-Ray diffraction results provided evidence for the presence of anatase and rutile phases, known to be typical characteristics of both the TiO2 and SnO2 used. During the thermal treatment, Ag2O was reduced to metallic silver. The photodegradation rehearsals were carried out using a 0.01 mmol/L Rhodamine B solution in a 100mg/L photocatalyst suspension in a 500ml beaker, which was irradiated with 4W germicide Ultraviolet light of 254nm. In addition, samples were removed after duration of about 10 minutes to an hour, where they were analyzed thoroughly in UV-vis spectrophotometer. The analysis of the results indicated that for the compositions up to 2.5% molar of Ag2O, the photoactivity was found to be greater than that of Degussa P25 photocatalyst powder, and as such it was then used as a reference. Taking into account 90% degradation of Rhodamine B, a duration period of 11 minutes was obtained for the developed photocatalyst powder compared to the 38 minutes observed for the Degussa P25. FEG-SEM micrographies enabled the verification of the morphology as well as the interaction of the oxide particles with the metallic silver, which led us to propose a model for the increase in photoactivity observed in the photocatalyst powder under investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El programa Europeo HORIZON2020 en Futuras Ciudades Inteligentes establece como objetivo que el 20% de la energía eléctrica sea generada a partir de fuentes renovables. Este objetivo implica la necesidad de potenciar la generación de energía eólica en todos los ámbitos. La energía eólica reduce drásticamente las emisiones de gases de efecto invernadero y evita los riesgos geo-políticos asociados al suministro e infraestructuras energéticas, así como la dependencia energética de otras regiones. Además, la generación de energía distribuida (generación en el punto de consumo) presenta significativas ventajas en términos de elevada eficiencia energética y estimulación de la economía. El sector de la edificación representa el 40% del consumo energético total de la Unión Europea. La reducción del consumo energético en este área es, por tanto, una prioridad de acuerdo con los objetivos "20-20-20" en eficiencia energética. La Directiva 2010/31/EU del Parlamento Europeo y del Consejo de 19 de mayo de 2010 sobre el comportamiento energético de edificaciones contempla la instalación de sistemas de suministro energético a partir de fuentes renovables en las edificaciones de nuevo diseño. Actualmente existe una escasez de conocimiento científico y tecnológico acerca de la geometría óptima de las edificaciones para la explotación de la energía eólica en entornos urbanos. El campo tecnológico de estudio de la presente Tesis Doctoral es la generación de energía eólica en entornos urbanos. Específicamente, la optimization de la geometría de las cubiertas de edificaciones desde el punto de vista de la explotación del recurso energético eólico. Debido a que el flujo del viento alrededor de las edificaciones es exhaustivamente investigado en esta Tesis empleando herramientas de simulación numérica, la mecánica de fluidos computacional (CFD en inglés) y la aerodinámica de edificaciones son los campos científicos de estudio. El objetivo central de esta Tesis Doctoral es obtener una geometría de altas prestaciones (u óptima) para la explotación de la energía eólica en cubiertas de edificaciones de gran altura. Este objetivo es alcanzado mediante un análisis exhaustivo de la influencia de la forma de la cubierta del edificio en el flujo del viento desde el punto de vista de la explotación energética del recurso eólico empleando herramientas de simulación numérica (CFD). Adicionalmente, la geometría de la edificación convencional (edificio prismático) es estudiada, y el posicionamiento adecuado para los diferentes tipos de aerogeneradores es propuesto. La compatibilidad entre el aprovechamiento de las energías solar fotovoltaica y eólica también es analizado en este tipo de edificaciones. La investigación prosigue con la optimización de la geometría de la cubierta. La metodología con la que se obtiene la geometría óptima consta de las siguientes etapas: - Verificación de los resultados de las geometrías previamente estudiadas en la literatura. Las geometrías básicas que se someten a examen son: cubierta plana, a dos aguas, inclinada, abovedada y esférica. - Análisis de la influencia de la forma de las aristas de la cubierta sobre el flujo del viento. Esta tarea se lleva a cabo mediante la comparación de los resultados obtenidos para la arista convencional (esquina sencilla) con un parapeto, un voladizo y una esquina curva. - Análisis del acoplamiento entre la cubierta y los cerramientos verticales (paredes) mediante la comparación entre diferentes variaciones de una cubierta esférica en una edificación de gran altura: cubierta esférica estudiada en la literatura, cubierta esférica integrada geométricamente con las paredes (planta cuadrada en el suelo) y una cubierta esférica acoplada a una pared cilindrica. El comportamiento del flujo sobre la cubierta es estudiado también considerando la posibilidad de la variación en la dirección del viento incidente. - Análisis del efecto de las proporciones geométricas del edificio sobre el flujo en la cubierta. - Análisis del efecto de la presencia de edificaciones circundantes sobre el flujo del viento en la cubierta del edificio objetivo. Las contribuciones de la presente Tesis Doctoral pueden resumirse en: - Se demuestra que los modelos de turbulencia RANS obtienen mejores resultados para la simulación del viento alrededor de edificaciones empleando los coeficientes propuestos por Crespo y los propuestos por Bechmann y Sórensen que empleando los coeficientes estándar. - Se demuestra que la estimación de la energía cinética turbulenta del flujo empleando modelos de turbulencia RANS puede ser validada manteniendo el enfoque en la cubierta de la edificación. - Se presenta una nueva modificación del modelo de turbulencia Durbin k — e que reproduce mejor la distancia de recirculación del flujo de acuerdo con los resultados experimentales. - Se demuestra una relación lineal entre la distancia de recirculación en una cubierta plana y el factor constante involucrado en el cálculo de la escala de tiempo de la velocidad turbulenta. Este resultado puede ser empleado por la comunidad científica para la mejora del modelado de la turbulencia en diversas herramientas computacionales (OpenFOAM, Fluent, CFX, etc.). - La compatibilidad entre las energías solar fotovoltaica y eólica en cubiertas de edificaciones es analizada. Se demuestra que la presencia de los módulos solares provoca un descenso en la intensidad de turbulencia. - Se demuestran conflictos en el cambio de escala entre simulaciones de edificaciones a escala real y simulaciones de modelos a escala reducida (túnel de viento). Se demuestra que para respetar las limitaciones de similitud (número de Reynolds) son necesarias mediciones en edificaciones a escala real o experimentos en túneles de viento empleando agua como fluido, especialmente cuando se trata con geometrías complejas, como es el caso de los módulos solares. - Se determina el posicionamiento más adecuado para los diferentes tipos de aerogeneradores tomando en consideración la velocidad e intensidad de turbulencia del flujo. El posicionamiento de aerogeneradores es investigado en las geometrías de cubierta más habituales (plana, a dos aguas, inclinada, abovedada y esférica). - Las formas de aristas más habituales (esquina, parapeto, voladizo y curva) son analizadas, así como su efecto sobre el flujo del viento en la cubierta de un edificio de gran altura desde el punto de vista del aprovechamiento eólico. - Se propone una geometría óptima (o de altas prestaciones) para el aprovechamiento de la energía eólica urbana. Esta optimización incluye: verificación de las geometrías estudiadas en el estado del arte, análisis de la influencia de las aristas de la cubierta en el flujo del viento, estudio del acoplamiento entre la cubierta y las paredes, análisis de sensibilidad del grosor de la cubierta, exploración de la influencia de las proporciones geométricas de la cubierta y el edificio, e investigación del efecto de las edificaciones circundantes (considerando diferentes alturas de los alrededores) sobre el flujo del viento en la cubierta del edificio objetivo. Las investigaciones comprenden el análisis de la velocidad, la energía cinética turbulenta y la intensidad de turbulencia en todos los casos. ABSTRACT The HORIZON2020 European program in Future Smart Cities aims to have 20% of electricity produced by renewable sources. This goal implies the necessity to enhance the wind energy generation, both with large and small wind turbines. Wind energy drastically reduces carbon emissions and avoids geo-political risks associated with supply and infrastructure constraints, as well as energy dependence from other regions. Additionally, distributed energy generation (generation at the consumption site) offers significant benefits in terms of high energy efficiency and stimulation of the economy. The buildings sector represents 40% of the European Union total energy consumption. Reducing energy consumption in this area is therefore a priority under the "20-20-20" objectives on energy efficiency. The Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings aims to consider the installation of renewable energy supply systems in new designed buildings. Nowadays, there is a lack of knowledge about the optimum building shape for urban wind energy exploitation. The technological field of study of the present Thesis is the wind energy generation in urban environments. Specifically, the improvement of the building-roof shape with a focus on the wind energy resource exploitation. Since the wind flow around buildings is exhaustively investigated in this Thesis using numerical simulation tools, both computational fluid dynamics (CFD) and building aerodynamics are the scientific fields of study. The main objective of this Thesis is to obtain an improved (or optimum) shape of a high-rise building for the wind energy exploitation on the roof. To achieve this objective, an analysis of the influence of the building shape on the behaviour of the wind flow on the roof from the point of view of the wind energy exploitation is carried out using numerical simulation tools (CFD). Additionally, the conventional building shape (prismatic) is analysed, and the adequate positions for different kinds of wind turbines are proposed. The compatibility of both photovoltaic-solar and wind energies is also analysed for this kind of buildings. The investigation continues with the buildingroof optimization. The methodology for obtaining the optimum high-rise building roof shape involves the following stages: - Verification of the results of previous building-roof shapes studied in the literature. The basic shapes that are compared are: flat, pitched, shed, vaulted and spheric. - Analysis of the influence of the roof-edge shape on the wind flow. This task is carried out by comparing the results obtained for the conventional edge shape (simple corner) with a railing, a cantilever and a curved edge. - Analysis of the roof-wall coupling by testing different variations of a spherical roof on a high-rise building: spherical roof studied in the litera ture, spherical roof geometrically integrated with the walls (squared-plant) and spherical roof with a cylindrical wall. The flow behaviour on the roof according to the variation of the incident wind direction is commented. - Analysis of the effect of the building aspect ratio on the flow. - Analysis of the surrounding buildings effect on the wind flow on the target building roof. The contributions of the present Thesis can be summarized as follows: - It is demonstrated that RANS turbulence models obtain better results for the wind flow around buildings using the coefficients proposed by Crespo and those proposed by Bechmann and S0rensen than by using the standard ones. - It is demonstrated that RANS turbulence models can be validated for turbulent kinetic energy focusing on building roofs. - A new modification of the Durbin k — e turbulence model is proposed in order to obtain a better agreement of the recirculation distance between CFD simulations and experimental results. - A linear relationship between the recirculation distance on a flat roof and the constant factor involved in the calculation of the turbulence velocity time scale is demonstrated. This discovery can be used by the research community in order to improve the turbulence modeling in different solvers (OpenFOAM, Fluent, CFX, etc.). - The compatibility of both photovoltaic-solar and wind energies on building roofs is demonstrated. A decrease of turbulence intensity due to the presence of the solar panels is demonstrated. - Scaling issues are demonstrated between full-scale buildings and windtunnel reduced-scale models. The necessity of respecting the similitude constraints is demonstrated. Either full-scale measurements or wind-tunnel experiments using water as a medium are needed in order to accurately reproduce the wind flow around buildings, specially when dealing with complex shapes (as solar panels, etc.). - The most adequate position (most adequate roof region) for the different kinds of wind turbines is highlighted attending to both velocity and turbulence intensity. The wind turbine positioning was investigated for the most habitual kind of building-roof shapes (flat, pitched, shed, vaulted and spherical). - The most habitual roof-edge shapes (simple edge, railing, cantilever and curved) were investigated, and their effect on the wind flow on a highrise building roof were analysed from the point of view of the wind energy exploitation. - An optimum building-roof shape is proposed for the urban wind energy exploitation. Such optimization includes: state-of-the-art roof shapes test, analysis of the influence of the roof-edge shape on the wind flow, study of the roof-wall coupling, sensitivity analysis of the roof width, exploration of the aspect ratio of the building-roof shape and investigation of the effect of the neighbouring buildings (considering different surrounding heights) on the wind now on the target building roof. The investigations comprise analysis of velocity, turbulent kinetic energy and turbulence intensity for all the cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The patterns of rock comminution within tumbling mills, as well as the nature of forces, are of significant practical importance. Discrete element modelling (DEM) has been used to analyse the pattern of specific energy applied to rock, in terms of spatial distribution within a pilot AG/SAG mill. We also analysed in some detail the nature of the forces, which may result in rock comminution. In order to examine the distribution of energy applied within the mill, the DEM models were compared with measured particle mass losses, in small scale AG and SAG mill experiments. The intensity of contact stresses was estimated using the Hertz theory of elastic contacts. The results indicate that in the case of the AG mill, the highest intensity stresses and strains are likely to occur deep within the charge, and close to the base. This effect is probably more pronounced for large AG mills. In the SAG mill case, the impacts of the steel balls on the surface of the charge are likely to be the most potent. In both cases, the spatial pattern of medium-to-high energy collisions is affected by the rotational speed of the mill. Based on an assumed damage threshold for rock, in terms of specific energy introduced per single collision, the spatial pattern of productive collisions within each charge was estimated and compared with rates of mass loss. We also investigated the nature of the comminution process within AG vs. SAG mill, in order to explain the observed differences in energy utilisation efficiency, between two types of milling. All experiments were performed using a laboratory scale mill of 1.19 m diameter and 0.31 m length, equipped with 14 square section lifters of height 40 mm. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated metabolic responses to fat and carbohydrate ingestion in lean male individuals consuming an habitual diet high or low in fat. Twelve high-fat phenotypes (HF) and twelve low-fat phenotypes (LF) participated in the study. Energy intake and macronutrient intake variables were assessed using a food frequency questionnaire. Resting (RMR) and postprandial metabolic rate and substrate oxidation (respiratory quotient; RQ) were measured by indirect calorimetry. HF had a significantly higher RMR and higher resting heart rate than LF. These variables remained higher in HF following the macronutrient challenge. In all subjects the carbohydrate load increased metabolic rate and heart rate significantly more than the fat load. Fat oxidation (indicated by a low RQ) was significantly higher in HF than in LF following the fat load; the ability to oxidise a high carbohydrate load did not differ between the groups. Lean male subjects consuming a diet high in fat were associated with increased energy expenditure at rest and a relatively higher fat oxidation in response to a high fat load; these observations may be partly responsible for maintaining energy balance on a high-fat (high-energy) diet. In contrast, a low consumer of fat is associated with relatively lower energy expenditure at rest and lower fat oxidation, which has implications for weight gain if high-fat foods or meals are periodically introduced to the diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the present worldwide epidemic of obesity, it is pertinent to ask how effective exercise could be in helping people to lose weight or to prevent weight gain. There is a widely held belief that exercise is futile for weight reduction because any energy expended in exercise is automatically compensated for by a corresponding increase in energy intake (EI). In other words, exercise elevates the intensity of hunger and drives food consumption. This “commonsense” view appears to originate in an energy-balance model of appetite control, which stipulates that energy expended will drive EI as a consequence of the regulation of energy balance. However, it is very clear that EI (food consumption or eating) is not just a biological matter. Eating does not occur solely to rectify some internal need state. Indeed, an examination of the relation between exercise and appetite control has shown a very weak coupling; most studies have demonstrated that food intake does not immediately rise after exercise, even after very high energy expenditure (EE).[1] The processes of exercise-induced EE and food consumption do not appear to be tightly linked. After exercise, there is only slow and partial compensation for the energy expended. Therefore, exercise can be very useful in helping to bring about weight loss and is even more important in preventing weight gain or weight regain. This editorial explores this issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercise is known to cause physiological changes that could affect the impact of nutrients on appetite control. This study was designed to assess the effect of drinks containing either sucrose or high-intensity sweeteners on food intake following exercise. Using a repeated-measures design, three drink conditions were employed: plain water (W), a low-energy drink sweetened with artificial sweeteners aspartame and acesulfame-K (L), and a high-energy, sucrose-sweetened drink (H). Following a period of challenging exercise (70% VO2 max for 50 min), subjects consumed freely from a particular drink before being offered a test meal at which energy and nutrient intakes were measured. The degree of pleasantness (palatability) of the drinks was also measured before and after exercise. At the test meal, energy intake following the artificially sweetened (L) drink was significantly greater than after water and the sucrose (H) drinks (p < 0.05). Compared with the artificially sweetened (L) drink, the high-energy (H) drink suppressed intake by approximately the energy contained in the drink itself. However, there was no difference between the water (W) and the sucrose (H) drink on test meal energy intake. When the net effects were compared (i.e., drink + test meal energy intake), total energy intake was significantly lower after the water (W) drink compared with the two sweet (L and H) drinks. The exercise period brought about changes in the perceived pleasantness of the water, but had no effect on either of the sweet drinks. The remarkably precise energy compensation demonstrated after the higher energy sucrose drink suggests that exercise may prime the system to respond sensitively to nutritional manipulations. The results may also have implications for the effect on short-term appetite control of different types of drinks used to quench thirst during and after exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air quality and temperatures in classrooms are important factors influencing the student learning process. To improve the thermal comfort of classrooms for Queensland State Schools, Queensland Government initiated the "Cooler Schools Program". One of the key objectives under this program was to develop low energy cooling systems as an alternative to high energy demand conventioanl split system of air conditioning (AC) systems. In order to compare and evaluate the energy performance of different types of air conditioners installed in classrooms, monitoring systems were installed in a state primary school located in the greater outer urban area of Brisbane, Australia. It was found that the installation of monitoring systems could have a significant impact on the accuracy of the data being collected. By comparing the estimated energy efficiency ratio (EER)for four qualified air conditioners included in this study, it was also found that AC6, a hybrid air conditioner newly developed by the Queensland Department of Public Works (DPW), had the best energy performance, although the current data were not able to show the full advantages of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Taylor coefficients c and d of the EM form factor of the pion are constrained using analyticity, knowledge of the phase of the form factor in the time-like region, 4m(pi)(2) <= t <= t(in) and its value at one space-like point, using as input the (g - 2) of the muon. This is achieved using the technique of Lagrange multipliers, which gives a transparent expression for the corresponding bounds. We present a detailed study of the sensitivity of the bounds to the choice of time-like phase and errors present in the space-like data, taken from recent experiments. We find that our results constrain c stringently. We compare our results with those in the literature and find agreement with the chiral perturbation-theory results for c. We obtain d similar to O(10) GeV-6 when c is set to the chiral perturbation-theory values.