909 resultados para Hidden Markov random fields


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems which can be modeled by ordinary stochastic differential equations. This new approach allows one to express the variational free energy as a functional of the marginal moments of the approximating Gaussian process. A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the complexity of approximate inference for stochastic differential equation models and makes it comparable to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various well-known inference methodologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a speech recognition engine using hybrid model of Hidden Markov Model (HMM) and Gaussian Mixture Model (GMM). Both the models have been trained independently and the respective likelihood values have been considered jointly and input to a decision logic which provides net likelihood as the output. This hybrid model has been compared with the HMM model. Training and testing has been done by using a database of 20 Hindi words spoken by 80 different speakers. Recognition rates achieved by normal HMM are 83.5% and it gets increased to 85% by using the hybrid approach of HMM and GMM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of logic and probabilistic models constructing for multivariate heterogeneous time series is offered. There are some important properties of these models, e.g. universality. In this paper also discussed the logic and probabilistic models distinctive features in comparison with hidden Markov processes. The early proposed time series forecasting algorithm is tested on applied task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper details the development and evaluation of AstonTAC, an energy broker that successfully participated in the 2012 Power Trading Agent Competition (Power TAC). AstonTAC buys electrical energy from the wholesale market and sells it in the retail market. The main focus of the paper is on the broker’s bidding strategy in the wholesale market. In particular, it employs Markov Decision Processes (MDP) to purchase energy at low prices in a day-ahead power wholesale market, and keeps energy supply and demand balanced. Moreover, we explain how the agent uses Non-Homogeneous Hidden Markov Model (NHHMM) to forecast energy demand and price. An evaluation and analysis of the 2012 Power TAC finals show that AstonTAC is the only agent that can buy energy at low price in the wholesale market and keep energy imbalance low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop, implement and study a new Bayesian spatial mixture model (BSMM). The proposed BSMM allows for spatial structure in the binary activation indicators through a latent thresholded Gaussian Markov random field. We develop a Gibbs (MCMC) sampler to perform posterior inference on the model parameters, which then allows us to assess the posterior probabilities of activation for each voxel. One purpose of this article is to compare the HJ model and the BSMM in terms of receiver operating characteristics (ROC) curves. Also we consider the accuracy of the spatial mixture model and the BSMM for estimation of the size of the activation region in terms of bias, variance and mean squared error. We perform a simulation study to examine the aforementioned characteristics under a variety of configurations of spatial mixture model and BSMM both as the size of the region changes and as the magnitude of activation changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing societal need to address the increasing prevalence of behavioral health issues, such as obesity, alcohol or drug use, and general lack of treatment adherence for a variety of health problems. The statistics, worldwide and in the USA, are daunting. Excessive alcohol use is the third leading preventable cause of death in the United States (with 79,000 deaths annually), and is responsible for a wide range of health and social problems. On the positive side though, these behavioral health issues (and associated possible diseases) can often be prevented with relatively simple lifestyle changes, such as losing weight with a diet and/or physical exercise, or learning how to reduce alcohol consumption. Medicine has therefore started to move toward finding ways of preventively promoting wellness, rather than solely treating already established illness. Evidence-based patient-centered Brief Motivational Interviewing (BMI) interven- tions have been found particularly effective in helping people find intrinsic motivation to change problem behaviors after short counseling sessions, and to maintain healthy lifestyles over the long-term. Lack of locally available personnel well-trained in BMI, however, often limits access to successful interventions for people in need. To fill this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge. Success of the CBIs, however, critically relies on insuring engagement and retention of CBI users so that they remain motivated to use these systems and come back to use them over the long term as necessary. Because of their text-only interfaces, current CBIs can therefore only express limited empathy and rapport, which are the most important factors of health interventions. Fortunately, in the last decade, computer science research has progressed in the design of simulated human characters with anthropomorphic communicative abilities. Virtual characters interact using humans’ innate communication modalities, such as facial expressions, body language, speech, and natural language understanding. By advancing research in Artificial Intelligence (AI), we can improve the ability of artificial agents to help us solve CBI problems. To facilitate successful communication and social interaction between artificial agents and human partners, it is essential that aspects of human social behavior, especially empathy and rapport, be considered when designing human-computer interfaces. Hence, the goal of the present dissertation is to provide a computational model of rapport to enhance an artificial agent’s social behavior, and to provide an experimental tool for the psychological theories shaping the model. Parts of this thesis were already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il riconoscimento delle gesture è un tema di ricerca che sta acquisendo sempre più popolarità, specialmente negli ultimi anni, grazie ai progressi tecnologici dei dispositivi embedded e dei sensori. Lo scopo di questa tesi è quello di utilizzare alcune tecniche di machine learning per realizzare un sistema in grado di riconoscere e classificare in tempo reale i gesti delle mani, a partire dai segnali mioelettrici (EMG) prodotti dai muscoli. Inoltre, per consentire il riconoscimento di movimenti spaziali complessi, verranno elaborati anche segnali di tipo inerziale, provenienti da una Inertial Measurement Unit (IMU) provvista di accelerometro, giroscopio e magnetometro. La prima parte della tesi, oltre ad offrire una panoramica sui dispositivi wearable e sui sensori, si occuperà di analizzare alcune tecniche per la classificazione di sequenze temporali, evidenziandone vantaggi e svantaggi. In particolare, verranno considerati approcci basati su Dynamic Time Warping (DTW), Hidden Markov Models (HMM), e reti neurali ricorrenti (RNN) di tipo Long Short-Term Memory (LSTM), che rappresentano una delle ultime evoluzioni nel campo del deep learning. La seconda parte, invece, riguarderà il progetto vero e proprio. Verrà impiegato il dispositivo wearable Myo di Thalmic Labs come caso di studio, e saranno applicate nel dettaglio le tecniche basate su DTW e HMM per progettare e realizzare un framework in grado di eseguire il riconoscimento real-time di gesture. Il capitolo finale mostrerà i risultati ottenuti (fornendo anche un confronto tra le tecniche analizzate), sia per la classificazione di gesture isolate che per il riconoscimento in tempo reale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-output Gaussian processes provide a convenient framework for multi-task problems. An illustrative and motivating example of a multi-task problem is multi-region electrophysiological time-series data, where experimentalists are interested in both power and phase coherence between channels. Recently, the spectral mixture (SM) kernel was proposed to model the spectral density of a single task in a Gaussian process framework. This work develops a novel covariance kernel for multiple outputs, called the cross-spectral mixture (CSM) kernel. This new, flexible kernel represents both the power and phase relationship between multiple observation channels. The expressive capabilities of the CSM kernel are demonstrated through implementation of 1) a Bayesian hidden Markov model, where the emission distribution is a multi-output Gaussian process with a CSM covariance kernel, and 2) a Gaussian process factor analysis model, where factor scores represent the utilization of cross-spectral neural circuits. Results are presented for measured multi-region electrophysiological data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the novel theory for performing multi-agent activity recognition without requiring large training corpora. The reduced need for data means that robust probabilistic recognition can be performed within domains where annotated datasets are traditionally unavailable. Complex human activities are composed from sequences of underlying primitive activities. We do not assume that the exact temporal ordering of primitives is necessary, so can represent complex activity using an unordered bag. Our three-tier architecture comprises low-level video tracking, event analysis and high-level inference. High-level inference is performed using a new, cascading extension of the Rao–Blackwellised Particle Filter. Simulated annealing is used to identify pairs of agents involved in multi-agent activity. We validate our framework using the benchmarked PETS 2006 video surveillance dataset and our own sequences, and achieve a mean recognition F-Score of 0.82. Our approach achieves a mean improvement of 17% over a Hidden Markov Model baseline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current Ambient Intelligence and Intelligent Environment research focuses on the interpretation of a subject’s behaviour at the activity level by logging the Activity of Daily Living (ADL) such as eating, cooking, etc. In general, the sensors employed (e.g. PIR sensors, contact sensors) provide low resolution information. Meanwhile, the expansion of ubiquitous computing allows researchers to gather additional information from different types of sensor which is possible to improve activity analysis. Based on the previous research about sitting posture detection, this research attempts to further analyses human sitting activity. The aim of this research is to use non-intrusive low cost pressure sensor embedded chair system to recognize a subject’s activity by using their detected postures. There are three steps for this research, the first step is to find a hardware solution for low cost sitting posture detection, second step is to find a suitable strategy of sitting posture detection and the last step is to correlate the time-ordered sitting posture sequences with sitting activity. The author initiated a prototype type of sensing system called IntelliChair for sitting posture detection. Two experiments are proceeded in order to determine the hardware architecture of IntelliChair system. The prototype looks at the sensor selection and integration of various sensor and indicates the best for a low cost, non-intrusive system. Subsequently, this research implements signal process theory to explore the frequency feature of sitting posture, for the purpose of determining a suitable sampling rate for IntelliChair system. For second and third step, ten subjects are recruited for the sitting posture data and sitting activity data collection. The former dataset is collected byasking subjects to perform certain pre-defined sitting postures on IntelliChair and it is used for posture recognition experiment. The latter dataset is collected by asking the subjects to perform their normal sitting activity routine on IntelliChair for four hours, and the dataset is used for activity modelling and recognition experiment. For the posture recognition experiment, two Support Vector Machine (SVM) based classifiers are trained (one for spine postures and the other one for leg postures), and their performance evaluated. Hidden Markov Model is utilized for sitting activity modelling and recognition in order to establish the selected sitting activities from sitting posture sequences.2. After experimenting with possible sensors, Force Sensing Resistor (FSR) is selected as the pressure sensing unit for IntelliChair. Eight FSRs are mounted on the seat and back of a chair to gather haptic (i.e., touch-based) posture information. Furthermore, the research explores the possibility of using alternative non-intrusive sensing technology (i.e. vision based Kinect Sensor from Microsoft) and find out the Kinect sensor is not reliable for sitting posture detection due to the joint drifting problem. A suitable sampling rate for IntelliChair is determined according to the experiment result which is 6 Hz. The posture classification performance shows that the SVM based classifier is robust to “familiar” subject data (accuracy is 99.8% with spine postures and 99.9% with leg postures). When dealing with “unfamiliar” subject data, the accuracy is 80.7% for spine posture classification and 42.3% for leg posture classification. The result of activity recognition achieves 41.27% accuracy among four selected activities (i.e. relax, play game, working with PC and watching video). The result of this thesis shows that different individual body characteristics and sitting habits influence both sitting posture and sitting activity recognition. In this case, it suggests that IntelliChair is suitable for individual usage but a training stage is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The challenge of detecting a change in the distribution of data is a sequential decision problem that is relevant to many engineering solutions, including quality control and machine and process monitoring. This dissertation develops techniques for exact solution of change-detection problems with discrete time and discrete observations. Change-detection problems are classified as Bayes or minimax based on the availability of information on the change-time distribution. A Bayes optimal solution uses prior information about the distribution of the change time to minimize the expected cost, whereas a minimax optimal solution minimizes the cost under the worst-case change-time distribution. Both types of problems are addressed. The most important result of the dissertation is the development of a polynomial-time algorithm for the solution of important classes of Markov Bayes change-detection problems. Existing techniques for epsilon-exact solution of partially observable Markov decision processes have complexity exponential in the number of observation symbols. A new algorithm, called constellation induction, exploits the concavity and Lipschitz continuity of the value function, and has complexity polynomial in the number of observation symbols. It is shown that change-detection problems with a geometric change-time distribution and identically- and independently-distributed observations before and after the change are solvable in polynomial time. Also, change-detection problems on hidden Markov models with a fixed number of recurrent states are solvable in polynomial time. A detailed implementation and analysis of the constellation-induction algorithm are provided. Exact solution methods are also established for several types of minimax change-detection problems. Finite-horizon problems with arbitrary observation distributions are modeled as extensive-form games and solved using linear programs. Infinite-horizon problems with linear penalty for detection delay and identically- and independently-distributed observations can be solved in polynomial time via epsilon-optimal parameterization of a cumulative-sum procedure. Finally, the properties of policies for change-detection problems are described and analyzed. Simple classes of formal languages are shown to be sufficient for epsilon-exact solution of change-detection problems, and methods for finding minimally sized policy representations are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho é estudado o modelo de Kuramoto num grafo completo, em redes scale-free com uma distribuição de ligações P(q) ~ q-Y e na presença de campos aleatórios com magnitude constante e gaussiana. Para tal, foi considerado o método Ott-Antonsen e uma aproximação "annealed network". Num grafo completo, na presença de campos aleatórios gaussianos, e em redes scale-free com 2 < y < 5 na presença de ambos os campos aleatórios referidos, foram encontradas transições de fase contínuas. Considerando a presença de campos aleatórios com magnitude constante num grafo completo e em redes scale-free com y > 5, encontraram-se transições de fase contínua (h < √2) e descontínua (h > √2). Para uma rede SF com y = 3, foi observada uma transição de fase de ordem infinita. Os resultados do modelo de Kuramoto num grafo completo e na presença de campos aleatórios com magnitude constante foram comparados aos de simulações, tendo-se verificado uma boa concordância. Verifica-se que, independentemente da topologia de rede, a constante de acoplamento crítico aumenta com a magnitude do campo considerado. Na topologia de rede scale-free, concluiu-se que o valor do acoplamento crítico diminui à medida que valor de y diminui e que o grau de sincronização aumenta com o aumento do número médio das ligações na rede. A presença de campos aleatórios com magnitude gaussiana num grafo completo e numa rede scale-free com y > 2 não destrói a transição de fase contínua e não altera o comportamento crítico do modelo de Kuramoto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present and evaluate a novel supervised recurrent neural network architecture, the SARASOM, based on the associative self-organizing map. The performance of the SARASOM is evaluated and compared with the Elman network as well as with a hidden Markov model (HMM) in a number of prediction tasks using sequences of letters, including some experiments with a reduced lexicon of 15 words. The results were very encouraging with the SARASOM learning better and performing with better accuracy than both the Elman network and the HMM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types.