953 resultados para HUMAN MAST-CELLS
Resumo:
Matrix metalloproteinase-9 (MMP-9) cleaves collagen, allowing leukocytes to traffic toward the vasculature and the lymphatics. When MMP-9 is unregulated by tissue inhibitor of metalloproteinase-1 (TIMP-1), this can lead to tissue destruction. Dendritic cells (DCs) infiltrate the oral mucosa increasingly in chronic periodontitis, characterized by infection with several pathogens including Porphyromonas gingivalis. In this study, human monocyte-derived DCs were pulsed with different doses of lipopolysaccharide of P. gingivalis 381 and of Escherichia coli type strain 25922, as well as whole live isogenic fimbriae-deficient mutant strains of P. gingivalis 381. Levels of induction of MMP-9 and TIMP-1, as well as interleukin-10 (IL-10), which reportedly inhibits MMP-9 induction, were measured by several approaches. Our results reveal that lipopolysaccharide of P. gingivalis, compared with lipopolysaccharide from E. coli type strain 25922, is a relatively potent inducer of MMP-9, but a weak inducer of TIMP-1, contributing to a high MMP-9/TIMP-1 ratio.Whole live P. gingivalis strain 381, major fimbriae mutant DPG-3 and double mutant MFB were potent inducers of MMP-9, but minor fimbriae mutant MFI was not. MMP-9 induction was inversely proportional to IL-10 induction. These results suggest that lipopolysaccharide and the minor and the major fimbriae of P. gingivalis may play distinct roles in induction by DCs of MMP-9, a potent mediator of local tissue destruction and leukocyte trafficking.
Resumo:
Mast cell degranulation is a highly regulated, calcium-dependent process, which is important for the acute release of inflammatory mediators during the course of many pathological conditions. We previously found that Synaptotagmin-2, a calcium sensor in neuronal exocytosis, was expressed in a mast cell line. We postulated that this protein may be involved in the control of mast cell-regulated exocytosis, and we generated Synaptotagmin-2 knock-out mice to test our hypothesis. Mast cells from this mutant animal conferred an abnormally decreased passive cutaneous anaphylaxis reaction on mast cell-deficient mice that correlated with a specific defect in mast cell-regulated exocytosis, leaving constitutive exocytosis and nonexocytic mast cell effector responses intact. This defect was not secondary to abnormalities in the development, maturation, migration, morphology, synthesis, and storage of inflammatory mediators, or intracellular calcium transients of the mast cells. Unlike neurons, the lack of Synaptotagmin-2 in mast cells was not associated with increased spontaneous exocytosis.
Resumo:
The interaction of hematopoietic precursor cell with bone marrow stromal cells is assumed to be important to the survival of hematopoietic precursor cells during hematopoietic cell long-term culture. Early hematopoietic stem cells are preferentially found within the stromal adherent cell fraction in primary long-term bone marrow cultures. The purpose of this dissertation was to understand the molecular mechanisms that govern these interactions for the regulation of survival and proliferation of early versus late hematopoietic cells.^ Monoclonal antibodies to the VLA-4 recognize the alpha4 beta1 integrin receptor on human hematopoietic cells. This monoclonal antibody blocks the adhesion between early hematopoietic progenitor cells (CD34 selected cells) and stromal cells when added to cultures of these cells. Addition of the VLA-4 monoclonal antibody to cultures of stromal cells and CD34 selected cells was shown to induce apoptosis of CD34 selected cells in these CD34 selected cell/stromal cell cocultures, as measured by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end-labeling method. In contrast to these experiments with early hematopoietic progenitor cells (CD34+), the level of adhesion between more differentiated cells (unfractionated hematopoietic cells) and stromal cells was not significantly altered by addition of the anti-VLA-4 monoclonal antibody. Similarly, the level of apoptosis of unfractionated hematopoietic cells was not significantly increased by the addition of anti-VLA-4 monoclonal antibody to cultures of the latter cells with stromal cells. The binding of the unfractionated cells is less than that of the CD34 selected. Since there is no difference between the alpha4 beta1 integrin expression level of the early and late myeloid cells, there may be a difference in the functional state of the integrin between the early and late myeloid cells. We also show that CD34+ selected precursor cells proliferate at a higher rate when these cells are plated on recombinant VCAM-1 molecules. These data indicate that the alpha4beta1 integrin receptor (VLA-4) plays a central role in the apoptosis rescue function which results from the anchorage-dependent growth of the CD34 selected early hematopoietic cells on stromal cells. The data suggest that these apoptosis rescue pathways have less significance as the cells mature and become anchorage-independent in their growth. These data should assist in the design of systems for the ex vivo proliferation and transduction of early hematopoietic cells for genetic therapy. ^
Resumo:
The feasibility of establishment of continuously proliferating growth factor-dependent human B lymphocytes was investigated. Normal B lymphocytes prepared from peripheral venous blood were stimulated with a variety of known polyclonal B cell activators, in the continuous presence of various cytokine preparations. Continuously proliferating growth factor-dependent B cell populations were obtained from cultures activated with either insoluble anti-IgM ((mu)-chain specific), soluble anti-IgM, heat-killed Staphylococcus aureus Cowen I (SAC), or dextran sulphate (DxS), in the continuous presence of exogenously added growth factor preparations containing either IL-1, IL-2 and BCGF, or BCGF alone. Although growth factor-dependent B cell lines were obtained via all three methods of activation, the correlation of mode of activation and growth factor preparation proved to be critical. B cell lines could not be established with anti-(mu) activation in the presence of only BCGF; however, B cell lines were successfully obtained with SAC or DxS activation from those cultures continuously replenished with only BCGF. These cultured B lymphocyte populations were routinely maintained in logarithmic-phase growth in the presence of exogenously added growth factor, and exhibited a population doubling time of approximately 36 hours. They were shown to specifically absorb BCGF, suggesting the presence of membrane receptors for it. Also, these cultured B cells have been utilized for the development of a microassay for the assessment of a M(,r) 12,000-14,000 B cell growth factor activity that is accurate, sensitive, and precise. The pronounced sensitivity of this bioassay beyond that of the conventional peripheral blood B cell assay has aided in the purification to homogeneity of natural product extracellular BCGF (EC-BCGF), and in the determination of the nucleotide sequence for a gene coding for a protein exhibiting BCGF activity. Additionally, these B cell lines specifically absorb, and proliferate in the presence of, an affinity-purified M(,r) 60,000 trypsin-sensitive intracellular protein derived from freshly isolated human T lymphocytes, providing evidence for a putative intracellular precursor of EC-BCGF, or a novel high molecular weight BCGF species. ^
Resumo:
BACKGROUND Psoriasis is a chronic inflammatory skin disease and various stress factors mediate inflammation. Heat shock protein (HSP) 90 plays an important role in cell survival; cytokine signaling, such as interleukin-17 receptor signaling; and immune responses. OBJECTIVE We sought to elucidate protein expression and distribution of HSP90 in psoriasis. METHODS HSP90 expression and its cellular source were analyzed on normal-appearing, nonlesional, lesional, and ustekinumab-treated psoriatic skin using immunohistochemistry and double immunofluorescence. RESULTS HSP90α, the inducible isoform of HSP90, was significantly up-regulated in epidermal keratinocytes and mast cells of lesional skin and down-regulated after ustekinumab therapy. LIMITATIONS There was a limited sample size. CONCLUSIONS HSP90 from keratinocytes and mast cells is a key regulator of psoriatic inflammation and HSP90 inhibitors may represent a novel therapeutic approach to the disease.
Resumo:
T helper type 9 (TH9) cells can mediate tumor immunity and participate in autoimmune and allergic inflammation in mice, but little is known about the TH9 cells that develop in vivo in humans. We isolated T cells from human blood and tissues and found that most memory TH9 cells were skin-tropic or skin-resident. Human TH9 cells coexpressed tumor necrosis factor-α and granzyme B and lacked coproduction of TH1/TH2/TH17 cytokines, and many were specific for Candida albicans. Interleukin-9 (IL-9) production was transient and preceded the up-regulation of other inflammatory cytokines. Blocking studies demonstrated that IL-9 was required for maximal production of interferon-γ, IL-9, IL-13, and IL-17 by skin-tropic T cells. IL-9-producing T cells were increased in the skin lesions of psoriasis, suggesting that these cells may contribute to human inflammatory skin disease. Our results indicate that human TH9 cells are a discrete T cell subset, many are tropic for the skin, and although they may function normally to protect against extracellular pathogens, aberrant activation of these cells may contribute to inflammatory diseases of the skin.
Resumo:
Obesity is increasing throughout the globe and characterized by excess adipose tissue, which represents a complex endocrine organ. Adipose tissue secrets bioactive molecules called adipokines, which act at endocrine, paracrine, and autocrine levels. Obesity has recently been shown to be associated with periodontitis, a disease characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium, and also with compromised periodontal healing. Although the underlying mechanisms for these associations are not clear yet, increased levels of proinflammatory adipokines, such as leptin, as found in obese individuals, might be a critical pathomechanistic link. The objective of this study was to examine the impact of leptin on the regenerative capacity of human periodontal ligament (PDL) cells and also to study the local leptin production by these cells. Leptin caused a significant downregulation of growth (TGFβ1, and VEGFA) and transcription (RUNX2) factors as well as matrix molecules (collagen, and periostin) and inhibited SMAD signaling under regenerative conditions. Moreover, the local expression of leptin and its full-length receptor was significantly downregulated by inflammatory, microbial, and biomechanical signals. This study demonstrates that the hormone leptin negatively interferes with the regenerative capacity of PDL cells, suggesting leptin as a pathomechanistic link between obesity and compromised periodontal healing.
Resumo:
The effect of IgG on cytokine production by human mononuclear cells (MNC) was studied. Tumor necrosis factor-alpha (TNF) was determined both by bioassay and by immunoassay. Interleukin-1 (IL1) was measured by a thymocyte costimulator assay, which was shown to be completely inhibitable by polyclonal anti-IL1. Precautions were taken to avoid inadvertent exposure of the studied cells to endotoxin. In a first model, TNF and IL1 production by adherent MNC in IgG-coated cluster plates were determined. IgG induced a strong TNF response, usually leveling off after 6 hr, and was comparable in kinetics and magnitude with an LPS-induced response. The thymocyte co-stimulatory activity response was relatively weak and peaked at 6 hr. In contrast, LPS-induced co-stimulatory activity production steadily increased over 24 hr. In a second model, MNC in suspension cultures containing autologous serum were exposed to IgG for intravenous use (IgG-IV). Cells exposed to IgG-IV produced higher amounts of cytokines than control counterparts and were primed for enhanced production of cytokines upon a second, unrelated stimulus. This implies that the effect of IgG-IV on suspended MNC resembles that of surface-adsorbed IgG and raises the possibility that cytokine release is an integral part of the mechanism of action of infused IgG. Evidence is presented suggesting that both surface IgG and IgG-IV act directly on monocytes, in a Fc-dependent manner.
Resumo:
Increasing evidence indicates that tumor microenvironment (TME) is crucial in tumor survival and metastases. Inflammatory cells accumulate around tumors and strangely appear to be permissive to their growth. One key stroma cell is the mast cell (MC), which can secrete numerous pro- and antitumor molecules. We investigated the presence and degranulation state of MC in pancreatic ductal adenocarcinoma (PDAC) as compared to acute ancreatitis (AP). Three different detection methods: (a) toluidine blue staining, as well as immunohistochemistry for (b) tryptase and (c) c-kit, were utilized to assess the number and extent of degranulation of MC in PDAC tissue (n=7), uninvolved pancreatic tissue derived from tumor-free margins (n=7) and tissue form AP (n=4). The number of MC detected with all three methods was significantly increased in PDAC, as compared to normal pancreatic tissue derived from tumor-free margins (p<0.05). The highest number of MC was identified by c-kit, 22.2∓7.5 per high power field (HPF) in PDAC vs 9.7∓5.1 per HPF in normal tissue. Contrary to MC in AP, where most of the detected MC were found degranulated, MC in PDAC appeared intact. In conclusion, MC are increased in number, but not degranulated in PDAC, suggesting that they may contribute to cancer growth by permitting selective release of pro-tumorogenic molecules.
Resumo:
Autophagy is a lysosomal bulk degradation pathway for cytoplasmic cargo, such as long-lived proteins, lipids, and organelles. Induced upon nutrient starvation, autophagic degradation is accomplished by the concerted actions of autophagy-related (ATG) proteins. Here we demonstrate that two ATGs, human Atg2A and Atg14L, colocalize at cytoplasmic lipid droplets (LDs) and are functionally involved in controlling the number and size of LDs in human tumor cell lines. We show that Atg2A is targeted to cytoplasmic ADRP-positive LDs that migrate bidirectionally along microtubules. The LD localization of Atg2A was found to be independent of the autophagic status. Further, Atg2A colocalized with Atg14L under nutrient-rich conditions when autophagy was not induced. Upon nutrient starvation and dependent on phosphatidylinositol 3-phosphate [PtdIns(3)P] generation, both Atg2A and Atg14L were also specifically targeted to endoplasmic reticulum-associated early autophagosomal membranes, marked by the PtdIns(3)P effectors double-FYVE containing protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides 1 (WIPI-1), both of which function at the onset of autophagy. These data provide evidence for additional roles of Atg2A and Atg14L in the formation of early autophagosomal membranes and also in lipid metabolism.
Resumo:
Engineering nanoparticles (NPs) for immune modulation require a thorough understanding of their interaction(s) with cells. Gold NPs (AuNPs) were coated with polyethylene glycol (PEG), polyvinyl alcohol (PVA) or a mixture of both with either positive or negative surface charge to investigate uptake and cell response in monocyte-derived dendritic cells (MDDCs). Inductively coupled plasma optical emission spectrometry and transmission electron microscopy were used to confirm the presence of Au inside MDDCs. Cell viability, (pro-)inflammatory responses, MDDC phenotype, activation markers, antigen uptake and processing were analyzed. Cell death was only observed for PVA-NH2 AuNPs at the highest concentration. MDDCs internalize AuNPs, however, surface modification influenced uptake. Though limited uptake was observed for PEG-COOH AuNPs, a significant tumor necrosis factor-alpha release was induced. In contrast, (PEG+PVA)-NH2 and PVA-NH2 AuNPs were internalized to a higher extent and caused interleukin-1beta secretion. None of the AuNPs caused changes in MDDC phenotype, activation or immunological properties.
Resumo:
Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells.
Resumo:
The IFNL4 gene is negatively associated with spontaneous and treatment-induced clearance of hepatitis C virus infection. The activity of IFNλ4 has an important causal role in the pathogenesis, but the molecular details are not fully understood. One possible reason for the detrimental effect of IFNλ4 could be a tissue-specific regulation of an unknown subset of genes. To address both tissue and subtype specificity in the interferon response, we treated primary human hepatocytes and airway epithelial cells with IFNα, IFNλ3 or IFNλ4 and assessed interferon mediated gene regulation using transcriptome sequencing. Our data show a surprisingly similar response to all three subtypes of interferon. We also addressed the tissue specificity of the response, and identified a subset of tissue-specific genes. However, the interferon response is robust in both tissues with the majority of the identified genes being regulated in hepatocytes as well as airway epithelial cells. Thus we provide an in-depth analysis of the liver interferon response seen over an array of interferon subtypes and compare it to the response in the lung epithelium.
Resumo:
Transforming growth factor β2 (TGF-β2) is well known to stimulate the expression of pro-fibrotic connective tissue growth factor (CTGF) in several cell types including human mesangial cells. The present study demonstrates that TGF-β2 enhances sphingosine 1-phosphate receptor 5 (S1P5) mRNA and protein expression in a time and concentration dependent manner. Pharmacological and siRNA approaches reveal that this upregulation is mediated via activation of classical TGF-β downstream effectors, Smad and mitogen-activated protein kinases. Most notably, inhibition of Gi with pertussis toxin and downregulation of S1P5 by siRNA block TGF-β2-stimulated upregulation of CTGF, demonstrating that Gi coupled S1P5 is necessary for TGF-β2-triggered expression of CTGF in human mesangial cells. Overall, these findings indicate that TGF-β2 dependent upregulation of S1P5 is required for the induction of pro-fibrotic CTGF by TGF-β. Targeting S1P5 might be an attractive novel approach to treat renal fibrotic diseases.