999 resultados para HMW-GS
Resumo:
The aim of this study is to evaluate the effects of yeast extract (EPL) in the moist diet on the fecal microbiotal, gas production and intestinal morphology of adult cats. Twenty adult cats from both sexes were randomly assigned to four treatments: 1) moist commercial diet (control); 2) control + 0,2% yeast extract dry matter; 3) control + 0,4%; and 4) control + 0,6%. Fecal microbiology and intestinal morphology were performed by radiographic, ultrasound, colonoscopy and intestinal biopsy exams for histology. There were no significant differences (P>0,05) for lactic acid bacteria counts and clostridium-reductor, gas area in the bowel (radiographic), wall thickness of the colon (ultrasound) and colonocytes count/globet cells (histology). Through colonoscopy, changes in characteristics of the intestinal mucosa in animals receiving treatment 4 were noticed. It is concluded that the addition of up to 0.6% EPL had no effect on the parameters evaluated, but further studies are needed to understand the action mechanisms and additive effects for domestic cats.
Resumo:
This study aimed to evaluate the potential of CH4 and CO2 in vitro production of soybean hulls, sunflower meal, corn, citrus pulp and corn silage. Four rumen-cannulated sheep were fed diets containing the evaluated ingredients at 40:60 forage:concentrate ratio. The gases produced by samples incubation were measured by injection into a gas chromatograph equipped with flame ionization detector. The experimental design was completely randomized with repeated measures, with three replicates for each evaluated food at four different periods. Under the experimental conditions, we verified different potential gas production among the ingredients. The citrus pulp meal was the ingredient with the greatest potential for CO2production. Corn silage and soybean hulls showed the greatest potential while citrus pulp and sunflower meal showed the least potential for CH4 production, when expressed in mL/g of degraded dry matter; therefore, they can be considered, among the evaluated ingredients, those with the lowest environmental impact.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Oil is a hydrocarbon mixture of various sizes, including saturated and aromatic compounds. Natural gas is a mixture of gaseous hydrocarbons and its main component is methane. In our society, the great demand for these fuels requires fast extraction, transportation and refining, increasing the number of accidents that compromise the environment. Oil is a finite resource and it is necessary to reduce the problems related to the question concerning environmental pollution which has encouraged the search for alternative fuel sources in our country. So today we have two major biofuels: ethanol and biodiesel. Concurrently, many studies have been done directed toward the isolation of microorganisms capable of degrading petrochemical industrial wastes, most of them using as a source of isolation soil and water collected in a contaminated environment. Isolation from alternative substrates has emerged as a new strategy that has provided satisfactory results. In this work, we present the leaf-cutter ants of the Attini tribe as a source for the isolation of micro-fungi with the potential for hydrocarbon degradation. These insects have a social way of life and a highly specialized system of intra and interspecific communication, which is based on the recognition of individuals through volatile chemical compounds, the majority hydrocarbons, stored in their exoskeleton. The micro-environment exoskeleton of Attini ants (genus Atta) used in this work proved to be a rich source of microbial biodiversity, as other studies have found. The flotation isolation technique applied here allowed the achievement of 214 micro-fungi, 118 representatives of the dematiaceous fungi group and 96 hyaline filamentous fungi. They were submitted to toluene degradation tests and at least one strain of each genus presented good results, namely Teratosphaeria, Exophiala, Cladosporium, Penicillium, Aspergillus... (Complete abstract click electronic access below)
Resumo:
Increased demand for energy and the search for alternative energy sources are remarkable and current facts. The management of domestic solid waste is also part of the issue in view of the possibility of power generation in existing landfills, which could provide financial autonomy to the system of waste management and improve the environmental balance of landfills in Brazil, currently only used for final solids disposal. Landfill gas is a viable alternative energy source has been tested in landfills in the World and in Brazil. Thus, the research aimed to evaluate the percentage of methane (CH4) present in three sinks of gases from a landfill in the municipality of Rio Claro – SP (Brazil), and to estimate the potential methane generation over its life through the application of a mathematical model. As a result it was found that in general the percentage of methane present in the gases is significant, between 50 and 62%. It was also noted that waste with disposal time between 8 and 12 months already are in the methanogenic stage. Finally, there was a tendency to increase the generation of methane in the transition periods of rain and drought
Resumo:
O estudo do conteúdo de foraminíferos de 8 amostras de sedimentos superficiais coletados em manguezal do norte da Ilha do Cardoso, sul do Estado de São Paulo, no verão (período chuvoso) de 2001, ao longo de um transecto no sentido da Baía de Trapandé para o interior, revelou dois segmentos distintos: a) uma planície inferior lamosa, com menor tempo de exposição sub-aérea e maior diversidade específica, dominada por Ammotiumcassis, A.salsum, Arenoparrella mexicana e Trochamminainflata, com abundância expressiva de Caroniaexilis na parte mais baixa e de Miliammina fusca na parte mais alta; b) uma planície superior arenosa, com maior tempo de exposição sub-aérea e menor diversidade, dominada por M. fusca e com abundância expressiva de T. inflatana parte mais baixa. Os sedimentos investigados são colonizados por foraminíferos exclusivamente aglutinantes, representados por 21 espécies de 16 gêneros. Dados de abundância relativa, riqueza, diversidade e equitatividade das espécies ao longo do transecto são apresentados, bem como os valores de salinidade, pH, oxigênio dissolvido e temperatura, medidos a partir da água intersticial dos sedimentos no momento da coleta das amostras. São feitas comparações com um estudo anterior, similar, que focalizou amostras coletadas, nos mesmos pontos, no inverno (período seco) de 2002. Os resultados obtidos interessam às análises de sistemas estuarinos modernos e antigos, bem como a projetos envolvidos com o diagnóstico do estado de conservação de áreas litorâneas, sendo úteis ao Setor de Petróleo e Gás
Resumo:
Fluidization consists in a bed of solid particles acquire fluid behavior by using a fluid (in this case air) flowing through the solid particles. Because of this, it can be a good mix of these materials, as well as to show increased rates of heat and mass transport. The fluid flowing through the spaces between the particles gives an interstitial velocity, that if is too low does not cause movement of the particulates. The gradual increase in speed will generate small vibrations between the particles promotes its fluidization. Our study focus in the fluid state of solid bed , when the fluid velocity reaches a state where the drag forces are sufficient to support the weight of the solid particles making these solids behave like fluids . Knowledge of the minimum velocity required to fluidize that particles is of great importance since below this speed there is no fluidization, and far above it, the solids are carried out of the bed. The fluidized bed reactor is widely used in physics and engineering, particularly in gas-solid fluidization, with emphasis on thermochemical processes
Resumo:
On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT P110, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of nonmetallic inclusions in the welded joint
Resumo:
The biomass gasification systems have been used for a long time and prove to be a good alternative to the generation of energy problems. This type of management requires a simple installation and maintenance which gives them a high availability. In Biomass project via Call CTEnerg 33/2006-1, funded by the Ministry of Science and Technology - MCT - Brazil, the Group Energy Systems Optimization – GOSE - at FEG - UNESP built and tested two prototypes of gasifiers. These is fed with 25 kg / h of dry wood (chips), and 50 Nm3 / h of air to produce gas at a flow rate of approximately 70 Nm3 / h of wood (syngas) at a temperature approximately 600 ° C. In this work of graduation, studies were conducted on the materials used in both the gasifier as well as cleaning the filter synthesis gases. The system of gas cleaning and conditioning is vital to ensure the life of the Internal Combustion Engine. In this case the studies of different filters for small gasification systems (properties, materials used, characteristics, types, etc.) are very relevant to its use in the prototype of the college campus. Were also performed a technical and economic analysis of a cogeneration system that consists in the combination of the downdraft gasifier studied in this work, an internal combustion engine, two heat exchangers and a SRA (absorption system refrigerator). Were calculated the costs of electricity generation, hot water and cold water. Finally, we analyzed the economic feasibility of the project
Resumo:
Acoustic communication is essential in mammals and has three main functions: acquisition of information about the environment, intraspecific communication and detection of predators and prey. Studies indicate that the introduction of sounds produced by anthropogenic activities such as military exercises, use of sonar and activities related to the extraction of oil and natural gas can cause interference in cetacean communication. Recently, the discovery of pre-salt tends to increase these activities. After a decade since the launch date of IBAMA`s licensing and before the imminent increase in exploration activities in Brazil, it is essential to conduct studies to monitor closely the impact of this type of activity on the marine ecosystem. Thus, this study aims to identify potential impacts that the process of oil and natural gas exploration and production might have on the communication of baleen whales. Data from literature on bioacoustics and ecology of these animals were linked with technical-scientific data regarding this type of activity. 310 documents related to the topic were analyzed. Among them only 81 documents are of academic origin, and the others mostly action plans and reports from government agencies. 80% of the documents do not have any species as a focus, and in the remaining 20%, 17% were focused on the Greenland Whale (Balaena mysticetus) and 22% on the gray whale (Eschrichtius robustus). The main impacts identified in this study were the increased frequency and amplitude of vocalization, reduction or cessation of more elaborate songs and masking problems
Resumo:
In this paper are compared two methods of deploying electrical substations, conventional type, when installed at open areas (Air Insulated Switchgear - AIS), and compact gas-insulated (Gas Insulated Switchgear - GIS) when installed inside buildings. With the expansion of urban centers, areas available for deployment of conventional substations become increasingly difficult to find in these locations. Also due to speculation in urban areas, it becomes feasible to install Gas Insulated Switchgear. This paper presents and evaluates criteria with advantages and disadvantages for application of the two methodologies, aiming to assist in decisionmaking moment of choice in deployment of Electric Power Substations in two scenarios. It is expected that at the end of this work, the criteria evaluated assist in this decision making
Resumo:
The aim of this work is to make a qualitatively and ecologically evaluation of a compact cogeneration system that operates with synthesis gas obtained from a gasifier. Using the Eucalyptus Biomass as fuel, that passes through a wood gasifier (Drowndraft type) and supply the internal combustion engine. The compact cogeneration system is composed of two heat exchangers, an energy generator connected to an internal combustion engine and an absorption refrigeration system. The complete system is installed in the laboratory from the Energy Department at the University of Guaratinguetá. By the analysis related to the First and Second Thermodynamic Laws applied in this system, was possible to identify the mass flows in each point, energetic efficiency, irreversibility and exergetic efficiency. The components that have the biggest irreversibilities are the gasifier, followed by the internal combustion engine, which should be focused in future improvements. The system efficiency in energetic basis is 51,84% and in exergetic basis is 22,78%. Using the ecologic efficiency methodology was possible to identify the emissions rates, the pollution indicator associated to the combustion of the synthesis gas in the internal combustion engine. The ecologic efficiency considering the energectic analysis is 91,73%, while considering the exergetic analysis, 83,65%. It is concluded that the use of the synthesis gas in a compact cogeneration system is viable from the technical and ecological point of view, making possible to generate energy for isolated communities and promoting the decentralized electricity generation
Resumo:
Through measurements of basic parameters for determining the fluidization regime, as particle size, minimum fluidization velocity, bed porosity, etc., This paper analyze the mass distribution of the phases of the bed to be discussed in relation to: the flow gas physical properties of the solid particles and the forces acting on the solid particles circulating within the bed, as the weight force, buoyancy and drag forces (Stokes' Law). Due to the weight force is constant, open up the discussion about which of the other two forces, buoyancy and drag force, influencing the behavior of the bed. We used the photographic method to realize the statistical analyzes. Therefore, we can conclude what changes can be made more convenient in fluidizing the bed to obtain the highest efficiency for a good mixing used in industrial processes