910 resultados para HIGH-FIELD STRENGTH
Resumo:
Australian mosquitoes were evaluated for their ability to become infected with and transmit a Torres Strait strain of Japanese encephalitis virus. Mosquitoes, which were obtained from either laboratory colonies and collected using Centers for Disease Control and Prevention light traps baited with CO2 and octenol or reared from larvae, were infected by feeding on a blood/sucrose solution containing 10(4.5+/-0.1) porcine stable-equine kidney (PS-EK) tissue culture infectious dose(50)/ mosquito of the TS3306 virus strain. After 14 d, infection and transmission rates of 100% and 81%, respectively, were obtained for a southeast Queensland strain of Culex annulirostris Skuse, and 93% and 61%, respectively, for a far north Queensland strain. After 13 or more days, infection and transmission rates of > 90% and greater than or equal to 50%, respectively, were obtained for southeast Queensland strains of Culex sitiens Wiedemann and Culex quinquefasciatus Say, and a far north Queensland strain of Culex gelidus Theobald. Although infection rates were > 55%, only 17% of Ochlerotatus vigilax (Skuse) and no Cx. quinquefasciatus, collected from far north Queensland, transmitted virus. North Queensland strains of Aedes aegypti L., Ochlerotatus kochi (Donitz), and Verrallina funerea (Theobald) were relatively refractory to infection. Vertical transmission was not detected among 673 F, progeny of Oc. vigilax. Results of the current vector competence study, coupled with high field isolation rates, host feeding patterns and widespread distribution, confirm the status of Cx. annulirostris as the major vector of Japanese encephalitis virus in northern Australia. The relative roles of other species in potential Japanese encephalitis virus transmission cycles in northern Australia are discussed.
Resumo:
“Drilling of polymeric matrix composites structures”
Resumo:
A detailed analysis of fabrics of the chilled margin of a thick dolerite dyke (Foum Zguid dyke, Southern Morocco) was performed in order to better understand the development of sub-fabrics during dyke emplacement and cooling. AMS data were complemented with measurements of paramagnetic and ferrimagnetic fabrics (measured with high field torque magnetometer), neutron texture and microstructural analyses. The ferrimagnetic and AMS fabrics are similar, indicating that the ferrimagnetic minerals dominate the AMS signal. The paramagnetic fabric is different from the previous ones. Based on the crystallization timing of the different mineralogical phases, the paramagnetic fabric appears related to the upward flow, while the ferrimagnetic fabric rather reflects the late-stage of dyke emplacement and cooling stresses. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The effect of monopolar and bipolar shaped pulses in additional yield of apple juice extraction is evaluated. The applied electric field strength, pulsewidth, and number of pulses are assessed for both pulse types, and divergences are analyzed. Variation of electric field strength is ranged from 100 to 1300 V/cm, pulsewidth from 20 to 300 mu s, and the number of pulses from 10 to 200, at a frequency of 200 Hz. Two pulse trains separated by 1 s are applied to apple cubes. Results are plotted against reference untreated samples for all assays. Specific energy consumption is calculated for each experiment as well as qualitative indicators for apple juice of total soluble dry matter and absorbance at 390-nm wavelength. Bipolar pulses demonstrated higher efficiency, and specific energetic consumption has a threshold where higher inputs of energy do not result in higher juice extraction when electric field variation is applied. Total soluble dry matter and absorbance results do not illustrate significant differences between application of monopolar and bipolar pulses, but all values are inside the limits proposed for apple juice intended for human consumption.
Resumo:
The distinctive characteristics of carbon fibre reinforced plastics, like low weight or high specific strength, had broadened their use to new fields. Due to the need of assembly to structures, machining operations like drilling are frequent. In result of composites inhomogeneity, this operation can lead to different damages that reduce mechanical strength of the parts in the connection area. From these damages, delamination is the most severe. A proper choice of tool and cutting parameters can reduce delamination substantially. In this work the results obtained with five different tool geometries are compared. Conclusions show that the choice of an adequate drill can reduce thrust forces, thus delamination damage.
Resumo:
As ligações adesivas são frequentemente utilizadas na fabricação de estruturas complexas que não poderiam ou não seriam tão fáceis de ser fabricadas numa só peça, a fim de proporcionar uma união estrutural que, teoricamente, deve ser pelo menos tão resistente como o material de base. As juntas adesivas têm vindo a substituir métodos como a soldadura, e ligações parafusadas e rebitadas, devido à facilidade de fabricação, menor custo, facilidade em unir materiais diferentes, melhor resistência, entre outras características. Os materiais compósitos reforçados com fibra de carbono são amplamente utilizados em muitas indústrias, tais como de construção de barcos, automóvel e aeronáutica, sendo usados em estruturas que requerem elevada resistência e rigidez específicas, o que reduz o peso dos componentes, mantendo a resistência e rigidez necessárias para suportar as diversas cargas aplicadas. Embora estes métodos de fabricação reduzam ao máximo as ligações através de técnicas de fabrico avançadas, estas ainda são necessárias devido ao tamanho dos componentes, limitações de projecto tecnológicas e logísticas. Em muitas estruturas, a combinação de compósitos com metais tais como alumínio ou titânio traz vantagens de projecto. Este trabalho tem como objectivo estudar, experimentalmente e por modelos de dano coesivo (MDC), juntas adesivas em L entre componentes de alumínio e compósito de carbono epóxido quando solicitados a forças de arrancamento, considerando diferentes configurações de junta e adesivos de ductilidade distinta. Os parâmetros geométricos abordados são a espessura do aderente de alumínio (tP2) e comprimento de sobreposição (LO). A análise numérica permitiu o estudo da distribuição das tensões, evolução do dano, resistência e modos de rotura. Os testes experimentais validam os resultados numéricos e fornecem mecanismos de projecto para juntas em L. Foi mostrado que a geometria do aderente em L (alumínio) e o tipo de adesivo têm uma influência directa na resistência de junta.
Resumo:
Dissertação para obtenção do Grau de Doutor em Conservação e Restauro, especialidade Ciências da Conservação
Resumo:
A tecnologia de ligação por adesivos estruturais tem vindo a ser utilizada ao longo de várias décadas, permitindo solucionar diversos problemas associados a técnicas chamadas "tradicionais" de ligação, como a soldadura, a rebitagem ou a ligação aparafusada. Esta é uma alternativa viável para substituir as ligações mecânicas, devido a diversos fatores como o menor peso estrutural, menor custo de fabricação e capacidade de união de diferentes materiais. O crescente recurso a materiais compósitos em diversas indústrias, nomeadamente a aeronáutica e naval, levaram ao consequente aumento da aplicação de ligações adesivas, por serem indicadas como forma de união destes materiais, onde é de enaltecer a sua elevada resistência à fadiga. Uma junta adesiva está maioritariamente sujeita a esforços de corte e arrancamento e portanto o conhecimento dos módulos de elasticidade à tração (E) ou corte (G) do adesivo, e ainda as resistências máximas à tração e ao corte, não é suficiente quando se pretende prever o comportamento da mesma. Na verdade, torna-se necessário abranger na análise a plastificação progressiva verificada nas juntas adesivas antes da rotura, sendo necessário o conhecimento de parâmetros tais como a taxa crítica de libertação de energia de deformação à tração (GIc) e corte (GIIc). Este trabalho pretende estudar um adesivo estrutural recentemente lançado no mercado, carecendo portanto da sua caracterização, para facilitar a previsão da resistência de estruturas adesivas ligadas com o mesmo. São 4 os ensaios a realizar: ensaios à tração de provetes em bruto, ensaios ao corte com a geometria Thick Adherend Shear Test (TAST), ensaios Double-Cantilever Beam (DCB) e ensaios End-Notched Flexure (ENF). Com a realização dos ensaios referidos, serão determinadas as propriedades mecânicas e de fratura à tração e ao corte, e serão fornecidos os parâmetros para a previsão da resistência de juntas adesivas com este adesivo por uma variedade de métodos, desde métodos analíticos mais expeditos até aos métodos numéricos mais avançados existentes atualmente. Os resultados foram de encontro aos disponibilizados pelo fabricante, sempre que estes se encontravam disponíveis, obtendo-se discrepâncias bastante reduzidas nos diversos parâmetros determinados.
Resumo:
Al-Cu alloys are widely used in the aerospace and automotive industries due to their high specific strength in some tempered conditions. However, due to poor corrosion and wear resistance, they are often anodized and/or painted. Plasma nitriding has been proposed as an alternative, though the developments in this technique are still in a recent stage for Al alloys. Electrical characterization techniques are well implemented NDTs in the industry because of good accuracy associated with lower cost, compared to other methods. Some, like eddy currents and 4-point probe techniques, are often used in coating inspection. The objective of this study was to perform Al nitriding at low temperatures to minimize the tempering initial condition damage and to assess the feasibility of eddy currents technique as a method for evaluating surface properties. The work developed can be divided in two stages. The first one was the process tuning, done at the Shibaura Institute of Technology, in Tokyo; and the second was the electrical characterization done in Faculdade de Ciências e Tecnologia, UNL. Low temperature nitriding of AA2011 alloy specimens was successfully achieved. Electrical conductivity results show that lift-off measurements by eddy currents testing can be related to surface properties.
Resumo:
Implantable devices must exhibit mechanical properties similar to native tissues to promote appropriate cellular behavior and regeneration. Herein, we report a new membrane manufacture method based on the synthesis of polyelectrolyte complexes (PECs) that exhibit saloplasticity, i.e. variable physical-chemistry using salt as a plasticizer. This is a Green Chemistry approach, as PECs generate structures that are stabilized solely by reversible electrostatic interactions, avoiding the use of harmful crosslinkers completely. Furthermore, natural polyelectrolytes - chitosan and alginate - were used. Upon mixing them, membranes were obtained by drying the PECs at 37ºC, yielding compact PECs without resorting to organicsolvents. The plasticizing effect of salt after synthesis was shown by measuring tensile mechanical properties, which were lower when samples were immersed in high ionic strength solutions.Salt was also used during membrane synthesis in different quan- tities (0 M, 0.15 M and 0.5 M in NaCl) yielding structures with no significant differences in morphology and degradation (around 15% after 3 months in lysozyme). However, swelling was higher (about 10x) when synthesized in the presence of salt. In vitro cell studies using L929 fibroblasts showed that cells adhered and proliferated preferentially in membranes fabricated in the presence of salt (i.e. the membranes with lower tensile strength). Structures with physical-chemical properties controlled with precision open a path to tissue engineering strategies depending on fine tuning mechanical properties and cellular adhesion simply by changing ionic strength during membrane manufacture
Resumo:
Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.
Resumo:
Applying a certain prestress level to the carbon fiber reinforced polymer (CFRP) reinforcement according to either externally bonded reinforcing (EBR) or near surface mounted (NSM) techniques can mobilize the strengthening potentialities of this high tensile strength composite material. For the prediction of the flexural behavior of reinforced concrete (RC) structures strengthened with prestressed EBR or NSM CFRPs, however, simplified analytical and design formulations still need to be developed as a guidance for engineers to design this type of strengthened structures by hand calculation without any programming help. Hence, the current work aims to briefly explain a developed simplified analytical approach, with a design framework, to predict the flexural behavior of RC beams flexurally strengthened with either prestressed EBR or NSM CFRP reinforcements. Moreover, an upper limit for the prestress level is proposed in order to optimize the ductility performance of the NSM prestressing technique. The good predictive performance of the analytical approaches was appraised by simulating the results of experimental programs composed of RC beams strengthened with prestressed NSM CFRP reinforcements.
Resumo:
Hybrid Composite Plate (HCP) is a reliable recently proposed retrofitting solution for concrete structures, which is composed of a strain hardening cementitious composite (SHCC) plate reinforced with Carbon Fibre Reinforced Polymer (CFRP). This system benefits from the synergetic advantages of these two composites, namely the high ductility of SHCC and the high tensile strength of CFRPs. In the materialstructural of HCP, the ultra-ductile SHCC plate acts as a suitable medium for stress transfer between CFRP laminates (bonded into the pre-sawn grooves executed on the SHCC plate) and the concrete substrate by means of a connection system made by either chemical anchors, adhesive, or a combination thereof. In comparison with traditional applications of FRP systems, HCP is a retrofitting solution that (i) is less susceptible to the detrimental effect of the lack of strength and soundness of the concrete cover in the strengthening effectiveness; (ii) assures higher durability for the strengthened elements and higher protection to the FRP component in terms of high temperatures and vandalism; and (iii) delays, or even, prevents detachment of concrete substrate. This paper describes the experimental program carried out, and presents and discusses the relevant results obtained on the assessment of the performance of HCP strengthened reinforced concrete (RC) beams subjected to flexural loading. Moreover, an analytical approach to estimate the ultimate flexural capacity of these beams is presented, which was complemented with a numerical strategy for predicting their load-deflection behaviour. By attaching HCP to the beams’ soffit, a significant increase in the flexural capacity at service, at yield initiation of the tension steel bars and at failure of the beams can be achieved, while satisfactory deflection ductility is assured and a high tensile capacity of the CFRP laminates is mobilized. Both analytical and numerical approaches have predicted with satisfactory agreement, the load-deflection response of the reference beam and the strengthened ones tested experimentally.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.
Resumo:
This work evaluated the effect of acetylated bacterial cellulose (ABC) substrates coated with urinary bladder matrix (UBM) on the behavior of Retinal Pigment Epithelium (RPE), as assessed by cell adhesion, proliferation and development of cell polarity exhibiting transepithelial resistance and polygonal shaped-cells with microvilli. Acetylation of bacterial cellulose (BC) generated a moderate hydrophobic surface (around 65°) while the adsorption of UBM onto these acetylated substrates did not affect significantly the surface hydrophobicity. The ABS substrates coated with UBM enabled the development of a cell phenotype closer to that of native RPE cells. These cells were able to express proteins essential for their cytoskeletal organization and metabolic function (ZO-1 and RPE65), while showing a polygonal shaped morphology with microvilli and a monolayer configuration. The coated ABC substrates were also characterized, exhibiting low swelling effect (between 1.52.0 swelling/mm3), high mechanical strength (2048 MPa) and non-pyrogenicity (2.12 EU/L). Therefore, the ABC substrates coated with UBM exhibit interesting features as potential cell carriers in RPE transplantation that ought to be further explored.