302 resultados para HEISENBERG PYROCHLORE ANTIFERROMAGNET


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wir betrachten die eindimensionale Heisenberg-Spinkette aus einem neuen und aktuelleren Blickwinkel. Experimentelle Techniken der Herstellung und selbstverständlich auch experimentelle Meßmethoden erlauben nicht nur die Herstellung von Nanopartikeln und Nanodrähten, sondern gestatten es auch, Domänenwände in diesen Strukturen auszumessen. Die meisten heute verwendeten Theorien und Simulationsmethoden haben ihre Grundlage im mikromagnetischen Kontinuumsmodell, daß schon über Jahrzehnte hinweg erforscht und erprobt ist. Wir stellen uns jedoch die Frage, ob die innere diskrete Struktur der Substrate und die quantenmechanischen Effekte bei der Genauigkeit heutiger Messungen in Betracht gezogen werden müssen. Dazu wählen wir einen anderen Ansatz. Wir werden zunächst den wohlbekannten klassischen Fall erweitern, indem wir die diskrete Struktur der Materie in unseren Berechnungen berücksichtigen. Man findet in diesem Formalismus einen strukturellen Phasenübergang zwischen einer Ising-artigen und einer ausgedehnten Wand. Das führt zu bestimmten Korrekturen im Vergleich zum Kontinuumsfall. Der Hauptteil dieser Arbeit wird sich dann mit dem quantenmechanischen Fall beschäftigen. Wir rotieren das System zunächst mit einer Reihe lokaler Transformationen derart, daß alle Spins in die z-Richtung ausgerichtet sind. Im Rahmen einer 1/S-Entwicklung läßt sich der erhaltene neue Hamilton-Operator diagonalisieren. Setzt man hier die klassische Lösung ein, so erhält man Anregungsmoden in diesem Grenzfall. Unsere Resultate erweitern und bestätigen frühere Berechnungen. Mit Hilfe der Numerik wird schließlich der Erwartungswert der Energie minimiert und somit die Form der Domänenwand im quantenmechanischen Fall berechnet. Hieraus ergeben sich auch bestimmte Korrekturen zum kritischen Verhalten des Systems. Diese Ergebnisse sind vollkommen neu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of this thesis is to understand and link together some of the early works by Michel Rumin and Pierre Julg. The work is centered around the so-called Rumin complex, which is a construction in subRiemannian geometry. A Carnot manifold is a manifold endowed with a horizontal distribution. If further a metric is given, one gets a subRiemannian manifold. Such data arise in different contexts, such as: - formulation of the second principle of thermodynamics; - optimal control; - propagation of singularities for sums of squares of vector fields; - real hypersurfaces in complex manifolds; - ideal boundaries of rank one symmetric spaces; - asymptotic geometry of nilpotent groups; - modelization of human vision. Differential forms on a Carnot manifold have weights, which produces a filtered complex. In view of applications to nilpotent groups, Rumin has defined a substitute for the de Rham complex, adapted to this filtration. The presence of a filtered complex also suggests the use of the formal machinery of spectral sequences in the study of cohomology. The goal was indeed to understand the link between Rumin's operator and the differentials which appear in the various spectral sequences we have worked with: - the weight spectral sequence; - a special spectral sequence introduced by Julg and called by him Forman's spectral sequence; - Forman's spectral sequence (which turns out to be unrelated to the previous one). We will see that in general Rumin's operator depends on choices. However, in some special cases, it does not because it has an alternative interpretation as a differential in a natural spectral sequence. After defining Carnot groups and analysing their main properties, we will introduce the concept of weights of forms which will produce a splitting on the exterior differential operator d. We shall see how the Rumin complex arises from this splitting and proceed to carry out the complete computations in some key examples. From the third chapter onwards we will focus on Julg's paper, describing his new filtration and its relationship with the weight spectral sequence. We will study the connection between the spectral sequences and Rumin's complex in the n-dimensional Heisenberg group and the 7-dimensional quaternionic Heisenberg group and then generalize the result to Carnot groups using the weight filtration. Finally, we shall explain why Julg required the independence of choices in some special Rumin operators, introducing the Szego map and describing its main properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wir untersuchen die Mathematik endlicher, an ein Wärmebad gekoppelter Teilchensysteme. Das Standard-Modell der Quantenelektrodynamik für Temperatur Null liefert einen Hamilton-Operator H, der die Energie von Teilchen beschreibt, welche mit Photonen wechselwirken. Im Heisenbergbild ist die Zeitevolution des physikalischen Systems durch die Wirkung einer Ein-Parameter-Gruppe auf eine Menge von Observablen A gegeben: Diese steht im Zusammenhang mit der Lösung der Schrödinger-Gleichung für H. Um Zustände von A, welche das physikalische System in der Nähe des thermischen Gleichgewichts zur Temperatur T darstellen, zu beschreiben, folgen wir dem Ansatz von Jaksic und Pillet, eine Darstellung von A zu konstruieren. Die Vektoren in dieser Darstellung definieren die Zustände, die Zeitentwicklung wird mit Hilfe des Standard Liouville-Operators L beschrieben. In dieser Doktorarbeit werden folgende Resultate bewiesen bzw. hergeleitet: - die Konstuktion einer Darstellung - die Selbstadjungiertheit des Standard Liouville-Operators - die Existenz eines Gleichgewichtszustandes in dieser Darstellung - der Limes des physikalischen Systems für große Zeiten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present thesis, we discuss the main notions of an axiomatic approach for an invariant Harnack inequality. This procedure, originated from techniques for fully nonlinear elliptic operators, has been developed by Di Fazio, Gutiérrez, and Lanconelli in the general settings of doubling Hölder quasi-metric spaces. The main tools of the approach are the so-called double ball property and critical density property: the validity of these properties implies an invariant Harnack inequality. We are mainly interested in the horizontally elliptic operators, i.e. some second order linear degenerate-elliptic operators which are elliptic with respect to the horizontal directions of a Carnot group. An invariant Harnack inequality of Krylov-Safonov type is still an open problem in this context. In the thesis we show how the double ball property is related to the solvability of a kind of exterior Dirichlet problem for these operators. More precisely, it is a consequence of the existence of some suitable interior barrier functions of Bouligand-type. By following these ideas, we prove the double ball property for a generic step two Carnot group. Regarding the critical density, we generalize to the setting of H-type groups some arguments by Gutiérrez and Tournier for the Heisenberg group. We recognize that the critical density holds true in these peculiar contexts by assuming a Cordes-Landis type condition for the coefficient matrix of the operator. By the axiomatic approach, we thus prove an invariant Harnack inequality in H-type groups which is uniform in the class of the coefficient matrices with prescribed bounds for the eigenvalues and satisfying such a Cordes-Landis condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Key technology applications like magnetoresistive sensors or the Magnetic Random Access Memory (MRAM) require reproducible magnetic switching mechanisms. i.e. predefined remanent states. At the same time advanced magnetic recording schemes push the magnetic switching time into the gyromagnetic regime. According to the Landau-Lifschitz-Gilbert formalism, relevant questions herein are associated with magnetic excitations (eigenmodes) and damping processes in confined magnetic thin film structures.rnObjects of study in this thesis are antiparallel pinned synthetic spin valves as they are extensively used as read heads in today’s magnetic storage devices. In such devices a ferromagnetic layer of high coercivity is stabilized via an exchange bias field by an antiferromagnet. A second hard magnetic layer, separated by a non-magnetic spacer of defined thickness, aligns antiparallel to the first. The orientation of the magnetization vector in the third ferromagnetic NiFe layer of low coercivity - the freelayer - is then sensed by the Giant MagnetoResistance (GMR) effect. This thesis reports results of element specific Time Resolved Photo-Emission Electron Microscopy (TR-PEEM) to image the magnetization dynamics of the free layer alone via X-ray Circular Dichroism (XMCD) at the Ni-L3 X-ray absorption edge.rnThe ferromagnetic systems, i.e. micron-sized spin valve stacks of typically deltaR/R = 15% and Permalloy single layers, were deposited onto the pulse leading centre stripe of coplanar wave guides, built in thin film wafer technology. The ferromagnetic platelets have been applied with varying geometry (rectangles, ellipses and squares), lateral dimension (in the range of several micrometers) and orientation to the magnetic field pulse to study the magnetization behaviour in dependence of these magnitudes. The observation of magnetic switching processes in the gigahertz range became only possible due to the joined effort of producing ultra-short X-ray pulses at the synchrotron source BESSY II (operated in the so-called low-alpha mode) and optimizing the wave guide design of the samples for high frequency electromagnetic excitation (FWHM typically several 100 ps). Space and time resolution of the experiment could be reduced to d = 100 nm and deltat = 15 ps, respectively.rnIn conclusion, it could be shown that the magnetization dynamics of the free layer of a synthetic GMR spin valve stack deviates significantly from a simple phase coherent rotation. In fact, the dynamic response of the free layer is a superposition of an averaged critically damped precessional motion and localized higher order spin wave modes. In a square platelet a standing spin wave with a period of 600 ps (1.7 GHz) was observed. At a first glance, the damping coefficient was found to be independent of the shape of the spin-valve element, thus favouring the model of homogeneous rotation and damping. Only by building the difference in the magnetic rotation between the central region and the outer rim of the platelet, the spin wave becomes visible. As they provide an additional efficient channel for energy dissipation, spin waves contribute to a higher effective damping coefficient (alpha = 0.01). Damping and magnetic switching behaviour in spin valves thus depend on the geometry of the element. Micromagnetic simulations reproduce the observed higher-order spin wave mode.rnBesides the short-run behaviour of the magnetization of spin valves Permalloy single layers with thicknesses ranging from 3 to 40 nm have been studied. The phase velocity of a spin wave in a 3 nm thick ellipse could be determined to 8.100 m/s. In a rectangular structure exhibiting a Landau-Lifschitz like domain pattern, the speed of the field pulse induced displacement of a 90°-Néel wall has been determined to 15.000 m/s.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo scopo di questo elaborato è compiere un viaggio virtuale attraverso le tappe principali dello sviluppo della teoria dei quanti e approfondirla nelle sue diverse rappresentazioni, quella di Erwin Schrodinger, quella di Werner Karl Heisenberg e quella di Paul Adrien Maurice Dirac, fino ad arrivare, nella fase conclusiva, a diverse applicazione delle rappresentazioni, sfiorando marginalmente la Teoria dei Campi e, di conseguenza, introducendo un parziale superamento della stessa Teoria Quantistica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ziel dieser Arbeit ist die Bestimmung der Spinpolarisation von der Heusler-Verbindung Co2Cr0,6Fe0,4Al. Dieses Ziel wurde durch die sorgfältige Präparation von Co2Cr0,6Fe0,4Al basierten Tunnelkontakten realisiert. Tunnelwiderstandsmessungen an Co2Cr0,6Fe0,4Al-basiertenrnTunnelkontakten ergaben einen Tunnelmagnetowiderstand von 101% bei 4 K. DieserrnTunnelmagnetowiderstand legt eine untere Grenze von 67% für die Spinpolarisation von Co2Cr0,6Fe0,4Al fest.rnrnCo2Cr0,6Fe0,4Al ist eine Heusler-Verbindung, der die Eigenschaften eines halbmetallischen Ferromagneten zugeschrieben werden. Ein halbmetallischer Ferromagnet hat an der Fermikante nur Elektronenspinzustände mit einer Polarisation. Als Folge davon können bei einem spinerhaltenden Tunnelprozess nur Elektronen einer Spinrichtung in den halbmetallischen Ferromagneten tunneln. Mit einem magnetischen Feld und einer durch einen Antiferromagneten fixierten Gegenelektrode, können an einem Tunnelkontakt mit einem spinpolarisierten Ferromagneten deshalb zwei Zustände, eine hohe und eine niedrige Tunnelleitfähigkeit, erzeugt werden. Daher finden spinpolarisierte Tunnelkontakte in Form von MRAM in der Datenspeicherung Verwendung. Bislang wurde jedoch keine Verbindung gefunden, der eine Spinpolarisation von 100% experimentell eindeutig nachgewiesen werden konnte. Für Co2Cr0,6Fe0,4Al lagen die höchsten gemessenen Spinpolarisationen um 50%.rnrnTunnelspektroskopie ist eine zuverlässige und anwendungsnahe Methode zur Untersuchung der Spinpolarisation. Inelastische Tunnelprozesse und eine reduzierte Ordnung an Grenzflächen bewirken einen reduzierten Tunnelmagnetowiderstand. Eine symmetriebrechende Barriere, wie amorphes AlOx, ist Voraussetzung für die Anwendung des Jullière-Modells zur Bestimmung der Spinpolarisation. Das Jullière-Modell verknüpft die Spin-aufgespaltenenrnZustandsdichten der Elektroden mit dem Tunnelmagnetowiderstand. Ohne einernsymmetriebrechende Barriere, zum Beispiel mit MgO als Isolatorschicht, können höhere Tunnelmagnetowiderstände erzwungen werden. Ein eindeutiger Rückschluss auf die Spinpolarisation ist dann jedoch nicht mehr möglich. Mit Aluminiumoxid-basierten Barrieren liefert die Anwendung des einfachen Jullière-Modells eine Untergrenze der Spinpolarisation.rnrnUm die Spinpolarisation von Co2Cr0,6Fe0,4Al durch Tunnelspektroskopie zu bestimmen, musste die Präparation der Tunnelkontakte verbessert werden. Dies wurde ermöglicht durch den Anbau einer neuen Sputterkammer mit besseren UHV-Bedingungen an ein bestehendes Präparationscluster. Co2Cr0,6Fe0,4Al wird mit Hilfe von Radiofrequenz-Kathodenzerstäuben deponiert. Die resultierenden Schichten verfügen nach ihrer Deposition über einen höheren Ordnungsgrad und über eine geordnete Oberfläche. Durch eine Magnesium-Pufferschicht war es möglich, auf diese Oberfläche eine homogene amorphe AlOx-Barriere zu deponieren. Als Gegenelektrode wurde CoFe als Ferromagnet mit MnFe als Antiferromagnet gewählt. Diese Gegenelektrode ermöglicht Tunnelmessungen bis hin zu Raumtemperatur.rnrnMit den in dieser Arbeit vorgestellten optimierten Analyse- und Präparationsmethoden ist es möglich, die Untergrenze der Spinpolarisation von Co2Cr0,6Fe0,4Al auf 67% anzuheben. Dies ist der bisher höchste veröffentlichte Wert der Spinpolarisation von Co2Cr0,6Fe0,4Al.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I modelli su reticolo con simmetrie SU(n) sono attualmente oggetto di studio sia dal punto di vista sperimentale, sia dal punto di vista teorico; particolare impulso alla ricerca in questo campo è stato dato dai recenti sviluppi in campo sperimentale per quanto riguarda la tecnica dell’intrappolamento di atomi ultrafreddi in un reticolo ottico. In questa tesi viene studiata, sia con tecniche analitiche sia con simulazioni numeriche, la generalizzazione del modello di Heisenberg su reticolo monodimensionale a simmetria SU(3). In particolare, viene proposto un mapping tra il modello di Heisenberg SU(3) e l’Hamiltoniana con simmetria SU(2) bilineare-biquadratica con spin 1. Vengono inoltre presentati nuovi risultati numerici ottenuti con l’algoritmo DMRG che confermano le previsioni teoriche in letteratura sul modello in esame. Infine è proposto un approccio per la formulazione della funzione di partizione dell’Hamiltoniana bilineare-biquadratica a spin-1 servendosi degli stati coerenti per SU(3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa trattazione ci proponiamo di analizzare e approfondire alcune delle definizioni fondamentali di funzione convessa; l’ambiente nel quale lavoreremo non si limiterà a quello euclideo, ma spazierà anche tra gruppo di Heisenberg e gruppo di Carnot. In questo lavoro dimostriamo una nuova caratterizzazione delle funzioni convesse in termini delle proprietà di sottomedia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heusler compounds is a large class of materials, which exhibits diverse fundamental phenomena, together with the possibility of their specific tailoring for various engineering demands. Present work discusses the magnetic noncollinearity in the family of noncentrosymmetric ferrimagnetic Mn2-based Heusler compounds. Based on the obtained experimental and theoretical results, Mn2YZ Heusler family is suspected to provide promising candidates for the formation of the skyrmion lattice. The work is focused on Mn2RhSn bulk polycrystalline sample, which serves as a prototype. It crystallizes in the tetragonal noncentrosymmetric structure (No. 119, I-4m2), which enables the anisotropic Dzyaloshinskii-Moriya (DM) exchange coupling. Additional short-range modulation, induced by the competing nearest and next-nearest interplanes Heisenberg exchange, is suppressed above the 80 K. This allows to develop the long-range modulations in the ideal ferrimagnetic structure within the ab crystallographic planes, and thus, favors to the occurrence of the skyrmion lattice within the temperature range of (80 ≤ T ≤ 270) K. The studies of Mn2RhSn were expandedrnto the broad composition range and continued on thin film samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questo elaborato vengono discusse le catene di spin-1, modelli quantistici definiti su un reticolo unidimensionale con interazione tra siti primi vicini. Fra la ricca varietà di tipologie esistenti è stato scelto di porre attenzione primariamente sul modello antiferromagnetico con interazione puramente biquadratica. Vengono presentati diversi metodi di classificazione degli autostati di tale modello, a partire dalle simmetrie che ne caratterizzano l’Hamiltoniana. La corrispondenza con altri modelli noti, quali il modello XXZ di spin 1/2, la catena di Heisenberg SU (3) ed i modelli di Potts, è utile ad individuare strutture simmetriche nascoste nel formalismo di spin-1, le quali consentono di ricavare informazioni sullo spettro energetico. Infine, vengono presentati risultati numerici accompagnati da alcune considerazioni sulle modifiche dello spettro quando si aggiunge un termine bilineare alla Hamiltoniana biquadratica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo scopo di questa tesi è dimostrare il Principio Forte di Continuazione Unica per opportune soluzioni di un'equazione di tipo Schrödinger Du=Vu, ove D è il sub-Laplaciano canonico di un gruppo di tipo H e V è un potenziale opportuno. Nel primo capitolo abbiamo esposto risultati già noti in letteratura sui gruppi di tipo H: partendo dalla definizione di tali gruppi, abbiamo fornito un'utile caratterizzazione in termini "elementari" che permette di esplicitare la soluzione fondamentale dei relativi sub-Laplaciani canonici. Nel secondo capitolo abbiamo mostrato una formula di rappresentazione per funzioni lisce sui gruppi di tipo H, abbiamo dimostrato una forma forte del Principio di Indeterminazione di Heisenberg (sempre nel caso di gruppi di tipo H) e abbiamo fornito una formula per la variazione prima dell'integrale di Dirichlet associato a Du=Vu. Nel terzo capitolo, infine, abbiamo analizzato le proprietà di crescita di funzioni di frequenza, utili a dimostrare le stime integrali che implicano in modo piuttosto immediato il Principio Forte di Continuazione Unica, principale oggetto del nostro studio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy in a multipartite quantum system appears from an operational perspective to be distributed to some extent non-locally because of correlations extant among the system's components. This non-locality allows users to transfer, in effect, locally accessible energy between sites of different system components by local operations and classical communication (LOCC). Quantum energy teleportation is a three-step LOCC protocol, accomplished without an external energy carrier, for effectively transferring energy between two physically separated, but correlated, sites. We apply this LOCC teleportation protocol to a model Heisenberg spin particle pair initially in a quantum thermal Gibbs state, making temperature an explicit parameter. We find in this setting that energy teleportation is possible at any temperature, even at temperatures above the threshold where the particles' entanglement vanishes. This shows for Gibbs spin states that entanglement is not fundamentally necessary for energy teleportation; correlation other than entanglement can suffice. Dissonance-quantum correlation in separable states-is in this regard shown to be a quantum resource for energy teleportation, more dissonance being consistently associated with greater energy yield. We compare energy teleportation from particle A to B in Gibbs states with direct local energy extraction by a general quantum operation on B and find a temperature threshold below which energy extraction by a local operation is impossible. This threshold delineates essentially two regimes: a high temperature regime where entanglement vanishes and the teleportation generated by other quantum correlations yields only vanishingly little energy relative to local extraction and a second low-temperature teleportation regime where energy is available at B only by teleportation.