884 resultados para HEAT TREATMENT
Resumo:
Characterization of the thermal decomposition of polyurethane (PUR) foams was performed by Fourier-transformed infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). Three main weight loss paths were observed by TGA, the residue being lower than 3 wt.% for 3 different PUR foams analyzed. FT-IR spectra indicated CO2, CO, NH3 and isocyanides as main decomposition products. PUR foams of different cell sizes were immersed in a slurry of the parent glass ceramic of composition Li2O-ZrO2-SiO2-Al 2O3 (LZSA) and submitted to heat treatment. The LZSA cellular glass ceramics obtained after sintering and crystallization resembled the original morphology of the PUR foams.
Resumo:
Tin oxide (SnO2) is widely used in industry as raw material for electronic devices, plating of different types of materials, for dyes and pigments, for electroplating, heterogeneous catalysis, etc. In this work SnO2 was obtained by a controlled precipitation method with special attention to the effects the tin precursor has on the microstructure of the final product. The most appropriate pH for obtaining SnO2 with the rutile structure as the main phase is 6.25 for SnCl2 and 6.40 for SnSO4. After heat treatment at 600 °C, particles of nanometric order (~10 - 30 nm approx) were obtained. The characterization of the solid phase was made by X-ray diffraction (XRD), thermal analysis (DTA/TG), transmission electron microscopy (TEM) and Fourier transformed infrared spectroscopy (FTIR).
Resumo:
Muutoskatsastusta koskeva lainsäädäntö aiheuttaa tulkintavaikeuksia ja rajoitteita moottoripyöräharrastajille ja alan toimijoille. Nykyinen asetus edellyttää tarvittaessa asiantuntijaselvitystä rakennemuutoksen lujuudesta ja hitsaustyöstä. Moottoripyörän geometria on laissa rajattu akselivälin ja emäputken kulman osalta. Moottoripyörien runkoja valmistetaan hitsaamalla seostamattomista teräksistä ja lämpökäsiteltävistä alumiini- ja terässeoksista. Runkojen muuntelu suoritetaan myös yleisesti hitsaamalla. Turvallisuuden kannalta tärkeiltä hitsausliitoksilta vaaditaan hyvää laatua, joka saavutetaan oikeilla hitsausparametreilla ja -suorituksella. Vaatimukset seostamattomalle teräkselle voidaan täyttää pätevöityneen hitsaajan toimesta. Lämpökäsiteltävät seokset vaativat lisäksi jälkilämpökäsittelyn, mikä edelleen vaikeuttaa runkojen hitsausta. Hitsien laadun merkitystä moottoripyörän rungossa tutkittiin soveltamalla rajoitetun vahingon periaatetta. Vauriotapauksena mallinnettiin satunnaisen rungon hitsausliitoksen murtuminen. Eri kuormitustilanteissa elementtimenetelmää hyödyntäen todettiin chopper-tyyppisten moottoripyörien runkojen olevan osittain vauriosietoisia ja havaittiin kriittiset hitsausliitokset emä- ja vaakaputken alueilla. Moottoripyörien runkojen kriittisiä hitsausliitoksia tarkasteltiin väsymisen kannalta. Soveltamalla tehollista lovijännitystä, vertailtiin emäputken hitsausliitosten väsymiskestävyyttä oletetulla kuormituksella. Tulosten perusteella muunneltu moottoripyörän runko voi olla alkuperäisrunkoa kestävämpi tai heikompi. Moottoripyörän akseliväli tai emäputken kulma eivät määrää kestävyyttä, vaan rakenteen yksityiskohtainen suunnittelu. Kriittisten liitosten väsymiskestävyyksissä havaittiin merkittäviä eroja eri mallien välillä.
Resumo:
In this dissertation the main aim was to study the usability of aspen wood in the mechanical wood processes, especially the factors that affect the usability of aspen wood, which is dried at different temperature levels. The problematic of varying temperatures from level to another seem to have significant effects on distortions. According to the studies conducted, many practical solutions for drying of aspen timber can be made. European aspen sawn timber should be dried in relatively narrow widths, short lengths, edged and sawn pith free. The results achieved give an interesting view for the distortions of aspen wood between HT drying and heat treatment. The most significant result is that cupping seems to decrease when increasing temperature level from HT drying to heat treatment phase. The difference is significant. Other very obvious result is that bow and crook are increasing between these two temperature levels, bow significantly. Also the modelling gives a good background for this result since cupping is reduced by higher temperatures. It can also be assumed that these distortions can be affected for example by sorting out the timber used to different moisture levels before drying. This could be a very simple solution for practical purposes. From practical point of view, it was also noted during the drying tests performed that the discoloration seem to be no problem for aspen boards dried in temperatures under 150 °C. Altogether, this dissertation covers many interesting points of view of factors affecting distortions of wood in different temperature stages. Aspen as species in use of mechanical wood industries seems to be a species suitable for component production. According to the results, the best yield from aspen timber can be achieved in industry that can utilize relatively short components of sawn wood. Results achieved give a significant indication about the factors affecting distortions of wood at different temperature stages of drying, especially considering European aspen.
Resumo:
The structural and surface properties of reticulated vitreous carbon (RVC) were discussed as a function of its heat treatment temperature (HTT), for samples produced in the range from 700 to 2000 ºC, using the furfuryl precursor resin. The samples were analyzed by x-ray photoelectron spectroscopy, first and second order Raman scattering as well as electrochemical response. Exploring the material turbostraticity concept, the interdependence between the RVC chemical surface variation and its defects were demonstrated. The influence of heteroatom presence was discussed in the material ordering for HTT lower than 1300 ºC while the graphitization process evolution was also pointed out for HTT higher than 1500 ºC.
Resumo:
Iron oxide nanoparticles were synthesized in microemulsion systems composed by Triton X-100/hexyl alcohol/cyclohexane/aqueous solution. The nanoparticles were synthesized in microemulsions containing different amounts of ammonium, in order to evaluate the influence of this parameter on the size of the nanoparticles and on the phase transformation after heat treatment. Powder materials were obtained after centrifugation, washing and drying, and they were analyzed as synthesized and after heating at 350, 500 and 1000 °C. It was observed that the higher amount of ammonium induced smaller particles and minor phase transformation, possibly due to a preferential nucleation process.
Resumo:
This study compared properties of silica (SiO2) from rice husk (RH) and rice husk ash (RHA) extracted by acid- and heat-treatment. The SiO2 from RH was in amorphous phase with nearly 100% purity while that from RHA was in crystalline phase with 97.56% purity. Both extracted SiO2 were used in the synthesis of zeolite NaY but that from RH was better due to the efficiency in product recovery and simplicity of extraction. After the NaY was exchanged to NH4Y and calcined to convert to HY, the product did not carry over the textural properties of the parent NaY and NH4Y.
Resumo:
A UV-spectrophotometric method is described for the determination of lansoprazole (LAN). The method is based on the measurement of the absorbance of LAN solution in acetonitrile at 281 nm. The system obeyed Beer's law over the concentration range of 1.25-25.0 µg/mL. The degradation behavior of LAN was investigated under dry heat treatment, UV-degradation, acid hydrolysis, alkali hydrolysis and oxidation; and found to degrade extensively under acid hydrolysis, alkali hydrolysis and oxidation. The method was applied to the determination of LAN in capsule and the results were statistically compared with those of the reference method by applying Student's t-test and F-test.
Resumo:
Indium tin oxide nanoparticles were synthesized in two different sizes by a nonhydrolytic sol-gel method. These powders were then transformed into ITO via an intermediate metastable state at between 300 and 600 ºC. The presence of characteristic O-In-O and O-Sn-O bands at 480 and 670 cm-1 confirmed the formation of ITO. The X-ray diffraction patterns indicated the preferential formation of metastable hexagonal phase ITO (corundum type) as opposed to cubic phase ITO when the reflux time was less than 3 h and the heat treatment temperature was below 600 ºC. Particle morphology and crystal size were examined by scanning electron microscopy.
Resumo:
Ion exchange method was employed by means of surface modification of the glass powders of LZSA (Li2O-ZrO2-SiO2-Al2O3) system submitted to a 70wt% NaNO3/30wt% NaSO4 bath salt followed by a heat treatment. Chemical analysis by X-ray fluorescence was used to evaluate the efficiency of ion exchange, while optical dilatometry was employed to evaluate sintering of compacts. Evaluation of the structure of sintered bodies was made by scanning electron microscopy. Substitution of Li+ ions by Na+ ions on the surface of powders during heat treatments of 450 and 600 ºC for 2-10 h promoted an increase in densification of the sintered bodies.
Resumo:
Palladium catalysts supported on alumina and zirconia were prepared by the impregnation method and calcined at 600 and 1000 ºC. Catalysts were characterized by BET measurements, XRD, XPS, O2-TPD and tested in methane combustion through temperature programmed surface reaction. Alumina supported catalysts were slightly more active than zirconia supported catalysts, but after initial heat treatment at 1000 ºC, zirconia supported palladium catalyst showed better performance above 500 ºC A pattern between temperature interval stability of PdOx species and activity was observed, where better PdOx stability was associated with more active catalysts.
Resumo:
The fungus Drechslera avenae, the causal agent of Helminthosporium leaf spot on oats (Avena sativa), survives as mycelium in crop residues and in infected seeds. In trials carried out in the laboratory, ten methods were evaluated for their efficiency to detect D. avenae in oat seeds. In each experiment, groups of two or three methods were compared to a standard protocol, in which seeds were placed in Petri dishes containing the Reis selective medium and incubated at 25±2 °C for ten days. Data were submitted to analysis of variation and the means of the methods were compared using the Dunnett test at the 5% significance level. Overall, the highest levels of seed infection by D. avenae were observed on oat seeds plated in the osmotic, the oat-agar and the Reis media, or on seeds subjected to heat treatment previous to incubation in malt-agar. Therefore, these methods should be recommended for detection of D. avenae in oat seed testing.
Resumo:
This work describes the sol-gel mixed oxide SiO2/TiO2 property, ST, as prepared, and submitted to heat treatment a 773 K, STC. SEM and EDS images show, within magnification used, a uniform distribution of the TiO2 particles in SiO2/TiO2 matrix. Both, ST and STC adsorb hydrogen peroxide on the surface and through EPR and UV-Vis diffuse reflectance spectra, it was possible to conclude that the species on the surface is the peroxide molecule attached to the Lewis acid site of titanium particle surface, alphaTi(H2O2)+. As the material is very porous, presumably the hydrogen peroxide molecule is confined in the matrix pores on the surface, a reason why the adsorbed species presents an exceptional long lived stability.
Resumo:
In dentistry, yttrium partially stabilized zirconia (ZrO2) has become one of the most attractive ceramic materials for prosthetic applications. The aim of this series of studies was to evaluate whether certain treatments used in the manufacturing process, such as sintering time, color shading or heat treatment of zirconia affect the material properties. Another aim was to evaluate the load-bearing capacity and marginal fit of manually copy-milled custom-made versus prefabricated commercially available zirconia implant abutments. Mechanical properties such as flexural strength and surface microhardness were determined for green-stage milled and sintered yttrium partially stabilized zirconia after different sintering time, coloring process and heat treatments. Scanning electron microscope (SEM) was used for analyzing the possible changes in surface structure of zirconia material after reduced sintering time, coloring and heat treatments. Possible phase change from the tetragonal to the monoclinic phase was evaluated by X-ray diffraction analysis (XRD). The load-bearing capacity of different implant abutments was measured and the fit between abutment and implant replica was examined with SEM. The results of these studies showed that the shorter sintering time or the thermocycling did not affect the strength or surface microhardness of zirconia. Coloring of zirconia decreased strength compared to un-colored control zirconia, and some of the colored zirconia specimens also showed a decrease in surface microhardness. Coloring also affected the dimensions of zirconia. Significantly decreased shrinkage was found for colored zirconia specimens during sintering. Heat treatment of zirconia did not seem to affect materials’ mechanical properties but when a thin coating of wash and glaze porcelain was fired on the tensile side of the disc the flexural strength decreased significantly. Furthermore, it was found that thermocycling increased the monoclinic phase on the surface of the zirconia. Color shading or heat treatment did not seem to affect phase transformation but small monoclinic peaks were detected on the surface of the heat treated specimens with a thin coating of wash and glaze porcelain on the opposite side. Custom-made zirconia abutments showed comparable load-bearing capacity to the prefabricated commercially available zirconia abutments. However, the fit of the custom-made abutments was less satisfactory than that of the commercially available abutments. These studies suggest that zirconia is a durable material and other treatments than color shading used in the manufacturing process of zirconia bulk material does not affect the material’s strength. The decrease in strength and dimensional changes after color shading needs to be taken into account when fabricating zirconia substructures for fixed dental prostheses. Manually copy-milled custom-made abutments have acceptable load-bearing capacity but the marginal accuracy has to be evaluated carefully.
Resumo:
Bioactive glasses are excellent candidates for implant materials, because they can form a chemical bond to bone or guide bone growth, depending on the glass composition. Some compositions have even shown soft tissue attachment and antimicrobial effects. So far, most clinical applications are based on monoliths, plates and particulates of different grain sizes. There is a growing interest in special products such as porous implants sintered from microspheres and fibers drawn from preforms or glass melts. The viscosity range at which these are formed coincides with the crystallization temperature range for most bioactive glasses, thus complicating the manufacturing process. In this work, the crystallization tendency and its kinetics for a series of glasses with their compositions within the range of bioactivity were investigated. The factors affecting crystallization and how it is related to composition were studied by means of thermal analysis and hot stage microscopy. The crystal compositions formed during isothermal and non-isothermal heat treatments were analyzed with SEM-EDXA and X-ray diffraction analysis. The temperatures at which sintering and fiber drawing can take place without interfering with crystallization were determined and glass compositions which are suitable for these purposes were established. The bioactivity of glass fibers and partly crystallized glass plates was studied by soaking them in simulated body fluid (SBF). The thickness of silica, calcium and phosphate rich reaction layers on the glass surface after soaking was used as an indication of the bioactivity. The results indicated that the crystallization tendencies of the experimental glasses are strongly dependent on composition. The main factor affecting the crystallization was found to be the alkali oxide content: the higher the alkali oxide content the lower the crystallization temperature. The primary crystalline phase formed at low temperatures in these glasses was sodium calcium silicate. The crystals were found to form through internal nucleation, leading to bulk crystallization. These glasses had high bioactivity in vitro. Even when partially crystalline, they formed typical reaction layers, indicating bioactivity. In fact, sodium calcium silicate crystals were shown to transform in vitro into hydroxyapatite during soaking. However, crystallization should be avoided because it was shown to retard dissolution, bioactivity reactions and complicate fiber drawing process. Glass compositions having low alkali oxide content showed formation of wollastonite crystals on the surface, at about 300°C above the glass transition temperature. The wide range between glass transition and crystallization allowed viscous flow sintering of these compositions. These glasses also withstood the thermal treatments required for fiber drawing processing. Precipitation of calcium and phosphate on fibers of these glasses in SBF suggested that they were osteoconductive. Glasses showing bioactivity crystallize easily, making their hot working challenging. Undesired crystallization can be avoided by choosing suitable compositions and heat treatment parameters, allowing desired product forms to be attained. Small changes in the oxide composition of the glass can have large effects and therefore a thorough understanding of glass crystallization behavior is a necessity for a successful outcome, when designing and manufacturing implants containing bioactive glasses.