654 resultados para HADRON COLLIDERS
Resumo:
Using the chiral symmetry, we calculated the dominant contribution to the nucleon - nucleon potential due to the exchange of three non-correlated pions. This contribution is isovetor with pseudoscalar and axial components. The pseudoscalar component is dominant, it has a range of 1.0 fm and it contributes in the pion channel.
Resumo:
We discuss the role of dissipation in the explosive spinodal decomposition scenario of hadron production during the chiral transition after a high-energy heavy ion collision. We use a Langevin description inspired by microscopic nonequilibrium field theory results to perform real-time lattice simulations of the behavior of the chiral fields. We show that the effect of dissipation can be dramatic. Analytic results for the short-time dynamics are also presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We compute the survival probability {vertical bar S vertical bar(2)} of large rapidity gaps (LRG) in a QCD based eikonal model with a dynamical gluon mass, where this dynamical infrared mass scale represents the onset of nonperturbative contributions to the diffractive hadron-hadron scattering. Since rapidity gaps can occur in the case of Higgs boson production via fusion of electroweak bosons, we focus on WW -> H fusion processes and show that the resulting {vertical bar S vertical bar(2)} decreases with the increase of the energy of the incoming hadrons; in line with the available experimental data for LRG. We obtain {vertical bar S vertical bar(2)} = 27.6 +/- 7.8% (18.2 +/- 17.0%) at Tevatron (CERN-LHC) energy for a dynamical gluon mass m(g) = 400 MeV. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We investigate the possibility that four-fermion contact interactions give rise to the observed deviation from the Standard Model prediction for the weak charge of cesium, through one-loop contributions. We show that the presence of loops involving the third generation quarks can explain such deviation.
Resumo:
We obtain a solution for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SIDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution.
Resumo:
The QCD Sum Rules have been used to evaluate the form factor in the vertex KK*pi. The method of QCD Sum Rules is based on the duality principle in which it is assumed that the hadrons can simultaneously be described in two levels: quarks and hadrons. This work showed that the, axial current, used to describe the meson K is not appropriated to study the form factor.
Resumo:
We consider a Coulomb gauge quark model which includes an explicit construct for a nontrivial vacuum structure in QCD. The dynamics is described by a Hamiltonain that contains a linearly rising confining potential and longitudinal and transverse Coulomb-type interactions. The Coulomb potential gives rise to ultraviolate divergences which are non-perturbatively renormalized by adding appropriate counter terms to the Hamiltonian. The equation of state for u and d quark matter at zero temperature is derived in the Hartree-Fock approximation.
Resumo:
CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider ( LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking - through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start- up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb(-1) or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, B-s production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb(-1) to 30 fb(-1). The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z(0) boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing E-T, B-mesons and tau's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model.
Resumo:
We present a study of eey and mu mu gamma events using 1109 (1009) pb-(1) of data in the electron (muon) channel, respectively. These data were collected with the DO detector at the Fermilab Tevatron pp collider at Is = 1.96 TeV. Having observed 453 (515) candidates in the eey (jtAy) final state, we measure the Z gamma production cross section for a photon with transverse energy ET > 7 GeV, separation between the photon and leptons Delta Rey > 0.7, and invariant mass of the di-lepton pair Mee > 30 GeV/(2)(c), to be 4.96 0.30(stat. + syst.) zE 0.30(lumi.) pb, in agreement with the Standard Model prediction of 4.74 0.22 pb. This is the most precise Zy cross section measurement at a hadron collider. We set limits on anomalous trilinear Zyy and ZZy gauge boson couplings of -0.085 < h(30)(y) < 0.084, -0.0053 < h(40)(y) < 0.0054 and -0.083 < h(30)(Z) < 0.082, 30 40 30 -0.0053 < h(40)(Z) < 0.0054 at the 95% C.L. for the form-factor scale A = 1.2 TeV. 40 Published by Elsevier B.V.
Resumo:
We discuss a system formed by two pairs of brane-anti-brane that form an arbitrary angle in a plane. We identify the gauge groups from this system which presumably could be used to construct gauge theories.
Resumo:
A mapping technique is used to derive in the context of constituent quark models effective Hamiltonians that involve explicit hadron degrees of freedom. The technique is based on the ideas of mapping between physical and ideal Fock spaces and shares similarities with the quasiparticle method of Weinberg. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, hermitian Hamiltonians with a clear physical interpretation are obtained. Applications and comparisons with other composite-particle formalisms of the recent literature are made using the nonrelativistic quark model. (C) 1998 Academic Press.
Resumo:
We derive the formal expressions needed to discuss the change of the twist-two parton distribution functions when a hadron is placed in a medium with relativistic scalar and vector mean fields. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We investigate the impact of new physics beyond the Standard Model to the s --> d gamma process, which is responsible for the short-distance contribution to the radiative decay Omega-( )--> Xi(-) gamma. We study three representative extensions of the Standard Model, namely a one-family technicolor model, a two Higgs doublet model and a model containing scalar leptoquarks. When constraints arising from the observed b --> s gamma transition and the upper limit on D-0-(D) over bar(0) mixing are taken into account, we find no significant contributions of new physics to the s --> d gamma process.
Resumo:
We consider numerical data for the lattice Landau gluon propagator obtained at very large lattice volumes in three-dimensional pure SU(2) Yang-Mills gauge theory (YM32). We find that the temporal correlator C(t) shows an oscillatory pattern and is negative for several values of t. This is an explicit violation of reflection positivity and can be related to gluon confinement. We also obtain a good fit for this quantity in the whole time interval using a sum of Stingl-like propagators.
Resumo:
We present preliminary results of our numerical study of the critical dynamics of percolation observables for the two-dimensional Ising model. We consider the (Monte-Carlo) short-time evolution of the system obtained with a local heat-bath method and with the global Swendsen-Wang algorithm. In both cases, we find qualitatively different dynamic behaviors for the magnetization and Omega, the order parameter of the percolation transition. This may have implications for the recent attempts to describe the dynamics of the QCD phase transition using cluster observables.