880 resultados para Gypsum Plasterboard Panels
Resumo:
This paper focuses on a PV system linked to the electric grid by power electronic converters, identification of the five parameters modeling for photovoltaic systems and the assessment of the shading effect. Normally, the technical information for photovoltaic panels is too restricted to identify the five parameters. An undemanding heuristic method is used to find the five parameters for photovoltaic systems, requiring only the open circuit, maximum power, and short circuit data. The I–V and the P–V curves for a monocrystalline, polycrystalline and amorphous photovoltaic systems are computed from the parameters identification and validated by comparison with experimental ones. Also, the I–V and the P–V curves under the effect of partial shading are obtained from those parameters. The modeling for the converters emulates the association of a DC–DC boost with a two-level power inverter in order to follow the performance of a testing commercial inverter employed on an experimental system.
Resumo:
Based on samples cross-sections from the Main Altarpiece of the Coimbra Old Cathedral, where a blue coating performed in 1685 is observed (that was partly covered with a Prussian blue-containing overpaint), the raw materials present in this coating were reproduced and studied. Blue areas were painted with smalt in oil, according to the contract signed by Manoel da Costa Pereira in 1684 and the analysis by Le Gac in 2009. Based on these, three batches of cobalt-based glasses (S1, S2 and S3) were heated and melted in alumina crucibles in the kiln. S1 contained 6.03 % of cobalt oxide, S2 contained 2.10 %, with the addition of 1.49 % of magnesium oxide, and S3 contained 6.82 % of cobalt oxide, with the addition of 4.63% of antimony trioxide. These batches were ground mechanically with water and manually with different vehicles stated in recipes. The results were studied by means of OM, SEM-EDS, X-Ray CT, Colorimetry and Vickers HT. Different binders were also produced and analyzed by means of μ-FTIR, in order to perform their characterization and obtain Standard Spectra. Since anhydrite was identified in the ground layers, gypsum from Óbidos was also characterized by XRD. The main goal of this thesis was to study all the raw materials present in the 1685-blue coating, in order to allow the historically accurate reconstruction of the layers build-up in the next future.
Resumo:
Resumo: Nos últimos anos tem-se verificado um interesse crescente pela área das colas naturais, em particular na produção de placas de derivados de madeira para utilização no interior das construções. Estas colas parecem ser uma boa alternativa às colas sintéticas, derivadas do petróleo, pois, ao contribuírem para uma melhor qualidade do ar interior associada a uma menor incorporação de energia no produto final, apresentam vantagens interessantes em termos ambientais e de saúde. Nesse sentido fez-se uma revisão da bibliografia sobre a utilização laboratorial e mesmo semi-industrial de colas naturais em placas de derivados de madeira. São apresentados e discutidos alguns exemplos de materiais que estas colas aglutinam, bem como as suas características finais com vista a futuros desenvolvimentos experimentais de placas fabricadas a partir de resíduos agrícolas comuns. Abstract: An increased interest for bio-based adhesives for wood-based panels for building purposes has been arising. This type of adhesives could be a good alternative for petroleum based synthetic adhesives as bio-based adhesives can contribute for healthier indoor environments and, simultaneously, present lower embodied energy. For the previous reasons a bibliographic review was conducted, on the use of bio-based adhesives for the production of wood-based building panels. Some examples of the adhesives, the type of applications and the characterization of the resulting products are presented and compared, bearing in mind contributing for a future increase of research in this area.
Resumo:
The vulnerability of the masonry envelop under blast loading is considered critical due to the risk of loss of lives. The behaviour of masonry infill walls subjected to dynamic out-of-plane loading was experimentally investigated in this work. Using confined underwater blast wave generators (WBWG), applying the extremely high rate conversion of the explosive detonation energy into the kinetic energy of a thick water confinement, allowed a surface area distribution avoiding also the generation of high velocity fragments and reducing atmospheric sound wave. In the present study, water plastic containers, having in its centre a detonator inside a cylindrical explosive charge, were used in unreinforced masonry infills panels with 1.7m by 3.5m. Besides the usage of pressure and displacement transducers, pictures with high-speed video cameras were recorded to enable processing of the deflections and identification of failure modes. Additional numerical studies were performed in both unreinforced and reinforced walls. Bed joint reinforcement and grid reinforcement were used to strengthen the infill walls, and the results are presented and compared, allowing to obtain pressure-impulse diagrams for design of masonry infill walls.
Resumo:
This paper proposes a multifunctional converter to interface renewable energy sources (e.g., solar photovoltaic panels) and electric vehicles (EVs) with the power grid in smart grids context. This multifunctional converter allows deliver energy from the solar photovoltaic panels to an EV or to the power grid, and exchange energy in bidirectional mode between the EV and the power grid. Using this multifunctional converter are not required multiple conversion stages, as occurs with the traditional solutions, where are necessary two power converters to integrate the solar photovoltaic system in the power grid and also two power converters to integrate an off-board EV battery charger in the power grid (dc-dc and dc-ac power converters in both cases). Taking into account that the energy provided (or delivered) from the power grid in each moment is function of the EV operation mode and also of the energy produced from the solar photovoltaic system, it is possible to define operation strategies and control algorithms in order to increase the energy efficiency of the global system and to improve the power quality of the electrical system. The proposed multifunctional converter allows the operation in four distinct cases: (a) Transfer of energy from the solar photovoltaic system to the power grid; (b) Transfer of energy from the solar photovoltaic system and from the EV to the power grid; (c) Transfer of energy from the solar photovoltaic system to the EV or to the power grid; (d) Transfer of energy between the EV and the power grid. Along the paper are described the system architecture and the control algorithms, and are also presented some computational simulation results for the four aforementioned cases. It is also presented a comparative analysis between the traditional and the proposed solution in terms of operation efficiency and estimated cost of implementation.
Resumo:
The construction industry is responsible for high energy and raw materials consumption. Thus, it is important to minimize the high energy consumption by taking advantage of renewable energy sources and reusing industrial waste, decreasing the extraction of natural materials. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. The simultaneous incorporation of PCM and fly ash (FA) can reduce the energy consumption and the amount of materials landfilled. However, the addition of these materials in mortars modifies its characteristics. The main purpose of this study was the production and characterization in the fresh and hardened state of mortars with incorporation of different contents of PCM and FA. The binders studied were aerial lime, hydraulic lime, gypsum and cement. The proportion of PCM studied was 0%, 20%, 40% and 60% of the mass of the sand. The content of fly ash added to the mortars was 0%, 20%, 40% and 60% of the mass of the binder. It was possible to observe that the incorporation of PCM and fly ash in mortars caused differences in properties such as workability, microstructure, water absorption, compressive strength, flexural strength and adhesion.
Resumo:
Currently we are witnessing a huge concern of society with the parameters of comfort of the buildings and the energetic consumptions. It is known that there is a huge consumption of non-renewable sources of energy. Thus, it is urgent to develop and explore ways to take advantage of renewable sources of energy by improving the energy efficiency of buildings. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. However, the incorporation of phase change materials in mortars modifies its characteristics. The main purpose of this study was mechanical and thermal characterization of mortars with incorporation of PCM in mortars based in different binders. The binders studied were aerial lime, hydraulic lime, gypsum and cement. For each type of binder a reference composition (0% PCM) and a composition with incorporation of 40% of PCM were developed. It was possible to observe that the incorporation of PCM in mortars caused differences in properties such as workability, compressive strength, flexural strength and adhesion, however leads to an improvement of thermal behavior.
Resumo:
By taking advantage of the appropriate use of cement and polymer based materials and advanced computational tools, a pre-fabricated affordable house was built in a modular system. Modular system refers to the complete structure that is built-up by assembling pre-fabricated sandwich panels composed of steel fibre reinforced self-compacting concrete (SFRSCC) outer layers that are connected by innovative glass fibre reinforced polymer (GFRP) connectors, resulting in a panel with adequate structural, acoustic, and thermal insulation properties. The modular house was prepared for a typical family of six members, but its living area can be easily increased by assembling other pre-fabricated elements. The speed of construction and the cost of the constructive elements make these houses competitive when compared to traditional solutions. In this paper the relevant research subjacent to this project (LEGOUSE) is briefly described, as well as the construction process of the built real scale prototype.
Resumo:
Five full-scale timber floors were tested in order to analyse the in-plane behaviour of these structural systems. The main objective was an assessment of the effectiveness of in-plane strengthening using cross-laminated timber (CLT). To this end, one unstrengthened specimen (original), one specimen strengthened with a second layer of floorboards, two specimens strengthened with three CLT panels, and one specimen strengthened with two CLT panels, were tested. A numerical analysis was then performed in order to analyse the composite behaviour of the timber floors in more detail. Due to its importance as regards composite behaviour, the first phase of the experimental programme was composed of push-out tests on specimens representing the shear connection between the timber beams and the CLT panels. This paper describes the tests performed and the numerical modelling applied to evaluate the composite behaviour of the strengthened timber floors. The use of CLT panels is revealed to be an effective way to increase the in-plane stiffness of timber floors, through which the behaviour of the composite structure can be significantly changed, depending on the connection applied, or modified as required.
Resumo:
Hybrid Composite Plate (HCP) is a reliable recently proposed retrofitting solution for concrete structures, which is composed of a strain hardening cementitious composite (SHCC) plate reinforced with Carbon Fibre Reinforced Polymer (CFRP). This system benefits from the synergetic advantages of these two composites, namely the high ductility of SHCC and the high tensile strength of CFRPs. In the materialstructural of HCP, the ultra-ductile SHCC plate acts as a suitable medium for stress transfer between CFRP laminates (bonded into the pre-sawn grooves executed on the SHCC plate) and the concrete substrate by means of a connection system made by either chemical anchors, adhesive, or a combination thereof. In comparison with traditional applications of FRP systems, HCP is a retrofitting solution that (i) is less susceptible to the detrimental effect of the lack of strength and soundness of the concrete cover in the strengthening effectiveness; (ii) assures higher durability for the strengthened elements and higher protection to the FRP component in terms of high temperatures and vandalism; and (iii) delays, or even, prevents detachment of concrete substrate. This paper describes the experimental program carried out, and presents and discusses the relevant results obtained on the assessment of the performance of HCP strengthened reinforced concrete (RC) beams subjected to flexural loading. Moreover, an analytical approach to estimate the ultimate flexural capacity of these beams is presented, which was complemented with a numerical strategy for predicting their load-deflection behaviour. By attaching HCP to the beams’ soffit, a significant increase in the flexural capacity at service, at yield initiation of the tension steel bars and at failure of the beams can be achieved, while satisfactory deflection ductility is assured and a high tensile capacity of the CFRP laminates is mobilized. Both analytical and numerical approaches have predicted with satisfactory agreement, the load-deflection response of the reference beam and the strengthened ones tested experimentally.
Resumo:
This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.
Resumo:
This work proposes a constitutive model to simulate nonlinear behaviour of cement based materials subjected to different loading paths. The model incorporates a multidirectional fixed smeared crack approach to simulate crack initiation and propagation, whereas the inelastic behaviour of material between cracks is treated by a numerical strategy that combines plasticity and damage theories. For capturing more realistically the shear stress transfer between the crack surfaces, a softening diagram is assumed for modelling the crack shear stress versus crack shear strain. The plastic damage model is based on the yield function, flow rule and evolution law for hardening variable, and includes an explicit isotropic damage law to simulate the stiffness degradation and the softening behaviour of cement based materials in compression. This model was implemented into the FEMIX computer program, and experimental tests at material scale were simulated to appraise the predictive performance of this constitutive model. The applicability of the model for simulating the behaviour of reinforced concrete shear wall panels submitted to biaxial loading conditions, and RC beams failing in shear is investigated.
Resumo:
Recent durability studies have shown the susceptibility of bond in fiber-reinforced polymer (FRP) strengthened masonry components to hygrothermal exposures. However, it is not clear how this local material degradation affects the global behavior of FRP-strengthened masonry structures. This study addresses this issue by numerically investigating the nonlinear behavior of FRP-masonry walls after aging in two different environmental conditions. A numerical modeling strategy is adopted and validated with existing experimental tests on FRP-strengthened masonry panels. The model, once validated, is used for modeling of four hypothetical FRP-strengthened masonry walls with different boundary conditions, strengthening schemes, and reinforcement ratios. The nonlinear behavior of the walls is then simulated before and after aging in two different environmental conditions. The degradation data are taken from previous accelerated aging tests. The changes in the failure mode and nonlinear response of the walls after aging are presented and discussed.
Resumo:
Este artigo descreve a experiência prática de um trabalho realizado em sala de aula, que trata de agregar técnicas facilitadoras do desenvolvimento da criatividade, num processo de criação de moda. O método usado foi adaptado para o design de moda, através da utilização das técnicas de “brainstorming”, “mapas mentais” e “painéis semânticos” conjugados num exercício prático-experimental de criatividade. O objetivo deste estudo consiste em analisar o desempenho criativo dos alunos e as possibilidades resultantes da utilização e adaptação de tais metodologias de criatividade em design de moda.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores