916 resultados para Growth factors, epidermal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cyclin D1 expression is jointly regulated by growth factors and cell adhesion to the extracellular matrix in many cell types. Growth factors are thought to regulate cyclin D1 expression because they stimulate sustained extracellular signal-regulated kinase (ERK) activity. However, we show here that growth factors induce transient ERK activity when added to suspended fibroblasts and sustained ERK activity only when added to adherent fibroblasts. Cell attachment to fibronectin or anti-α5β1 integrin is sufficient to sustain the ERK signal and to induce cyclin D1 in growth factor-treated cells. Moreover, when we force the sustained activation of ERK, by conditional expression of a constitutively active MAP kinase/ERK kinase, we overcome the adhesion requirement for expression of cyclin D1. Thus, at least in part, fibroblasts are mitogen and anchorage dependent, because integrin action allows for a sustained ERK signal and the expression of cyclin D1 in growth factor-treated cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Exposure of eukaryotic cells to extracellular stimuli results in activation of mitogen-activated protein kinase (MAPK) cascades composed of MAPKs, MAPK kinases (MAP2Ks), and MAPK kinase kinases (MAP3Ks). Mammals possess a large number of MAP3Ks, many of which can activate the c-Jun N-terminal kinase (JNK) MAPK cascade when overexpressed, but whose biological function is poorly understood. We examined the function of the MAP3K MEK kinase 1 (MEKK1) in proinflammatory signaling. Using MEKK1-deficient embryonic stem cells prepared by gene targeting, we find that, in addition to its function in JNK activation by growth factors, MEKK1 is required for JNK activation by diverse proinflammatory stimuli, including tumor necrosis factor α, IL-1, double-stranded RNA, and lipopolysaccharide. MEKK1 is also essential for induction of embryonic stem cell migration by serum factors, but is not required for activation of other MAPKs or the IκB kinase signaling cascade.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clinical and experimental evidence suggests that spreading of malignant cells from a localized tumor (metastasis) is directly related to the number of microvessels in the primary tumor. This tumor angiogenesis is thought to be mediated by tumor-cell-derived growth factors. However, most tumor cells express a multitude of candidate angiogenesis factors and it is difficult to decipher which of these are rate-limiting factors in vivo. Herein we use ribozyme targeting of pleiotrophin (PTN) in metastatic human melanoma cells to assess the significance of this secreted growth factor for angiogenesis and metastasis. As a model we used human melanoma cells (1205LU) that express high levels of PTN and metastasize from subcutaneous tumors to the lungs of experimental animals. In these melanoma cells, we reduced PTN mRNA and growth factor activity by transfection with PTN-targeted ribozymes and generated cell lines expressing different levels of PTN. We found that the reduction of PTN does not affect growth of the melanoma cells in vitro. In nude mice, however, tumor growth and angiogenesis were decreased in parallel with the reduced PTN levels and apoptosis in the tumors was increased. Concomitantly, the metastatic spread of the tumors from the subcutaneous site to the lungs was prevented. These studies support a direct link between tumor angiogenesis and metastasis through a secreted growth factor and identify PTN as a candidate factor that may be rate-limiting for human melanoma metastasis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fibroblast growth factors (FGFs) effect cellular responses by binding to FGF receptors (FGFRs). FGF bound to extracellular domains on the FGFR in the presence of heparin activates the cytoplasmic receptor tyrosine kinase through autophosphorylation. We have crystallized a complex between human FGF1 and a two-domain extracellular fragment of human FGFR2. The crystal structure, determined by multiwavelength anomalous diffraction analysis of the selenomethionyl protein, is a dimeric assemblage of 1:1 ligand:receptor complexes. FGF is bound at the junction between the two domains of one FGFR, and two such units are associated through receptor:receptor and secondary ligand:receptor interfaces. Sulfate ion positions appear to mark the course of heparin binding between FGF molecules through a basic region on receptor D2 domains. This dimeric assemblage provides a structural mechanism for FGF signal transduction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Src-family protein tyrosine kinases (PTKs) transduce signals to regulate neuronal development and synaptic plasticity. However, the nature of their activators and molecular mechanisms underlying these neural processes are unknown. Here, we show that brain-derived neurotrophic factor (BDNF) and platelet-derived growth factor enhance expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor 1 and 2/3 proteins in rodent neocortical neurons via the Src-family PTK(s). The increase in AMPA receptor levels was blocked in cultured neocortical neurons by addition of a Src-family-selective PTK inhibitor. Accordingly, neocortical cultures from Fyn-knockout mice failed to respond to BDNF whereas those from wild-type mice responded. Moreover, the neocortex of young Fyn mutants exhibited a significant in vivo reduction in these AMPA receptor proteins but not in their mRNA levels. In vitro kinase assay revealed that BDNF can indeed activate the Fyn kinase: It enhanced tyrosine phosphorylation of Fyn as well as that of enolase supplemented exogenously. All of these results suggest that the Src-family kinase Fyn, activated by the growth factors, plays a crucial role in modulating AMPA receptor expression during brain development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of the pancreas depends on epithelial-mesenchymal interactions. Fibroblast growth factors (FGFs) and their receptors (FGFRs 1–4) have been identified as mediators of epithelial-mesenchymal interactions in different organs. We show here that FGFR-2 IIIb and its ligands FGF-1, FGF-7, and FGF-10 are expressed throughout pancreatic development. We also show that in mesenchyme-free cultures of embryonic pancreatic epithelium FGF-1, FGF-7, and FGF-10 stimulate the growth, morphogenesis, and cytodifferentiation of the exocrine cells of the pancreas. The role of FGFs signaling through FGFR-2 IIIb was further investigated by inhibiting FGFR-2 IIIb signaling in organocultures of pancreatic explants (epithelium + mesenchyme) by using either antisense FGFR-2 IIIb oligonucleotides or a soluble recombinant FGFR-2 IIIb protein. Abrogation of FGFR-2 IIIb signaling resulted in a considerable reduction in the size of the explants and in a 2-fold reduction of the development of the exocrine cells. These results demonstrate that FGFs signaling through FGFR-2 IIIb play an important role in the development of the exocrine pancreas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In urodele amphibians, lens induction during development and regeneration occurs through different pathways. During development, the lens is induced from the mutual interaction of the ectoderm and the optic vesicle, whereas after lentectomy the lens is regenerated through the transdifferentiation of the iris-pigmented epithelial cells. Given the known role of fibroblast growth factors (FGFs) during lens development, we examined whether or not the expression and the effects of exogenous FGF during urodele lens regeneration were conserved. In this paper, we describe expression of FGF-1 and its receptors, FGFR-2 (KGFR and bek variants) and FGFR-3, in newts during lens regeneration. Expression of these genes was readily observed in the dedifferentiating pigmented epithelial cells, and the levels of expression were high in the lens epithelium and the differentiating fibers and lower in the retina. These patterns of expression implied involvement of FGFs in lens regeneration. To further elucidate this function, we examined the effects of exogenous FGF-1 and FGF-4 during lens regeneration. FGF-1 or FGF-4 treatment in lentectomized eyes resulted in the induction of abnormalities reminiscent to the ones induced during lens development in transgenic mice. Effects included transformation of epithelial cells to fiber cells, double lens regeneration, and lenses with abnormal polarity. These results establish that FGF molecules are key factors in fiber differentiation, polarity, and morphogenesis of the lens during regeneration even though the regenerating lens is induced by a different mechanism than in lens development. In this sense, FGF function in lens regeneration and development should be regarded as conserved. Such conservation should help elucidate the mechanisms of lens regeneration in urodeles and its absence in higher vertebrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Normal aging is associated with a significant reduction in cognitive function across primate species. However, the structural and molecular basis for this age-related decline in neural function has yet to be defined clearly. Extensive cell loss does not occur as a consequence of normal aging in human and nonhuman primate species. More recent studies have demonstrated significant reductions in functional neuronal markers in subcortical brain regions in primates as a consequence of aging, including dopaminergic and cholinergic systems, although corresponding losses in cortical innervation from these neurons have not been investigated. In the present study, we report that aging is associated with a significant 25% reduction in cortical innervation by cholinergic systems in rhesus monkeys (P < 0.001). Further, these age-related reductions are ameliorated by cellular delivery of human nerve growth factor to cholinergic somata in the basal forebrain, restoring levels of cholinergic innervation in the cortex to those of young monkeys (P = 0.89). Thus, (i) aging is associated with a significant reduction in cortical cholinergic innervation; (ii) this reduction is reversible by growth-factor delivery; and (iii) growth factors can remodel axonal terminal fields at a distance, representing a nontropic action of growth factors in modulating adult neuronal structure and function (i.e., administration of growth factors to cholinergic somata significantly increases axon density in terminal fields). These findings are relevant to potential clinical uses of growth factors to treat neurological disorders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ets factors play a critical role in oncogenic Ras- and growth factor-mediated regulation of the proximal rat prolactin (rPRL) promoter in pituitary cells. The rPRL promoter contains two key functional Ets binding sites (EBS): a composite EBS/Pit-1 element located at –212 and an EBS that co-localizes with the basal transcription element (BTE, or A-site) located at –96. Oncogenic Ras exclusively signals to the –212 site, which we have named the Ras response element (RRE); whereas the response of multiple growth factors (FGFs, EGF, IGF, insulin and TRH) maps to both EBSs. Although Ets-1 and GA binding protein (GABP) have been implicated in the Ras and insulin responses, respectively, the precise identity of the pituitary Ets factors that specifically bind to the RRE and BTE sites remains unknown. In order to identify the Ets factor(s) present in GH4 and GH3 nuclear extracts (GH4NE and GH3NE) that bind to the EBSs contained in the RRE and BTE, we used EBS-RRE and BTE oligonucleotides in electrophoretic mobility shift assays (EMSAs), antibody supershift assays, western blot analysis of partially purified fractions and UV-crosslinking studies. EMSAs, using either the BTE or EBS-RRE probes, identified a specific protein–DNA complex, designated complex A, which contains an Ets factor as determined by oligonucleotide competition studies. Using western blot analysis of GH3 nuclear proteins that bind to heparin–Sepharose, we have shown that Ets-1 and GABP, which are MAP kinase substrates, co-purify with complex A, and supershift analysis with specific antisera revealed that complex A contains Ets-1, GABPα and GABPβ1. In addition, we show that recombinant full-length Ets-1 binds equivalently to BTE and EBS-RRE probes, while recombinant GABPα/β preferentially binds to the BTE probe. Furthermore, comparing the DNA binding of GH4NE containing both Ets-1 and GABP and HeLa nuclear extracts devoid of Ets-1 but containing GABP, we were able to show that the EBS-RRE preferentially binds Ets-1, while the BTE binds both GABP and Ets-1. Finally, UV-crosslinking experiments with radiolabeled EBS-RRE and BTE oligonucleotides showed that these probes specifically bind to a protein of ∼64 kDa, which is consistent with binding to Ets-1 (54 kDa) and/or the DNA binding subunit of GABP, GABPα (57 kDa). These studies show that endogenous, pituitary-derived GABP and Ets-1 bind to the BTE, whereas Ets-1 preferentially binds to the EBS-RRE. Taken together, these data provide important insights into the mechanisms by which the combination of distinct Ets members and EBSs transduce differential growth factor responses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bleeding and delayed healing of ulcers are well recognized clinical problems associated with the use of aspirin and other nonsteroidal antiinflammatory drugs, which have been attributed to their antiaggregatory effects on platelets. We hypothesized that antiplatelet drugs might interfere with gastric ulcer healing by suppressing the release of growth factors, such as vascular endothelial growth factor (VEGF), from platelets. Gastric ulcers were induced in rats by serosal application of acetic acid. Daily oral treatment with vehicle, aspirin, or ticlopidine (an ADP receptor antagonist) was started 3 days later and continued for 1 week. Ulcer induction resulted in a significant increase in serum levels of VEGF and a significant decrease in serum levels of endostatin (an antiangiogenic factor). Although both aspirin and ticlopidine markedly suppressed platelet aggregation, only ticlopidine impaired gastric ulcer healing and angiogenesis as well as reversing the ulcer-associated changes in serum levels of VEGF and endostatin. The effects of ticlopidine on ulcer healing and angiogenesis were mimicked by immunodepletion of circulating platelets, and ticlopidine did not influence ulcer healing when given to thrombocytopenic rats. Incubation of human umbilical vein endothelial cells with serum from ticlopidine-treated rats significantly reduced proliferation and increased apoptosis, effects reversed by an antibody directed against endostatin. Ticlopidine treatment resulted in increased platelet endostatin content and release. These results demonstrate a previously unrecognized contribution of platelets to the regulation of gastric ulcer healing. Such effects likely are mediated through the release from platelets of endostatin and possibly VEGF. As shown with ticlopidine, drugs that influence gastric ulcer healing may do so in part through altering the ability of platelets to release growth factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acidic and basic fibroblast growth factors (FGFs) share a wide range of diverse biological activities. To date, low levels of FGF have not been correlated with a pathophysiologic state. We report that blood vessels of spontaneously hypertensive rats are shown to be associated with a marked decrement in endothelial basic FGF content. This decrement correlates both with hypertension and with a decrease in the endothelial content of nitric oxide synthase. Restoration of FGF to physiological levels in the vascular wall, either by systemic administration or by in vivo gene transfer, significantly augmented the number of endothelial cells with positive immunostaining for nitric oxide synthase, corrected hypertension, and ameliorated endothelial-dependent responses to vasoconstrictors. These results suggest an important role for FGFs in blood pressure homeostasis and open new avenues for the understanding of the etiology and treatment of hypertension.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Overexpression of the c-myc oncogene is associated with a variety of both human and experimental tumors, and cooperation of other oncogenes and growth factors with the myc family are critical in the evolution of the malignant phenotype. The interaction of hepatocyte growth factor (HGF) with c-myc during hepatocarcinogenesis in a transgenic mouse model has been analyzed. While sustained overexpression of c-myc in the liver leads to cancer, coexpression of HGF and c-myc in the liver delayed the appearance of preneoplastic lesions and prevented malignant conversion. Furthermore, tumor promotion by phenobarbital was completely inhibited in the c-myc/HGF double transgenic mice, whereas phenobarbital was an effective tumor promoter in the c-myc single transgenic mice. The results indicate that HGF may function as a tumor suppressor during early stages of liver carcinogenesis, and suggest the possibility of therapeutic application for this cytokine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prostate carcinoma is the second leading cause of death from malignancy in men in the United States. Prostate cancer cells express type I insulin-like growth factor receptor (IGF-IR) and prostate cancer selectively metastazises to bone, which is an environment rich in insulin-like growth factors (IGFs), thereby supporting a paracrine action for cancer cell proliferation. We asked whether the IGF-IR is coupled to tumorigenicity and invasion of prostate cancer. When rat prostate adenocarcinoma cells (PA-III) were stably transfected with an antisense IGF-IR expression construct containing the ZnSO4-inducible metallothionein-1 transcriptional promoter, the transfectants expressed high levels of IGF-IR antisense RNA after induction with ZnSO4, which resulted in dramatically reduced levels of endogenous IGF-IR mRNA. A significant reduction in expression both of tissue-type plasminogen activator and of urokinase-type plasminogen activator occurred in PA-III cells accompanying inhibition of IGF-IR. Subcutaneous injection of either nontransfected PA-III or PA-III cells transfected with vector minus the IGF-IR insert into nude mice resulted in large tumors after 4 weeks. However, mice injected with IGF-IR antisense-transfected PA-III cells either developed tumors 90% smaller than controls or remained tumor-free after 60 days of observation. When control-transfected PA-III cells were inoculated over the abraded calvaria of nude mice, large tumors formed with invasion of tumor cells into the brain parenchyma. In contrast, IGF-IR antisense transfectants formed significantly smaller tumors with no infiltration into brain. These results indicate an important role for the IGF/IGF-IR pathway in metastasis and provide a basis for targeting IGF-IR as a potential treatment for prostate cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

All three isoforms of transforming growth factors beta (TGF-betal, TGF-beta2, and TGF-beta3) are secreted as latent complexes and activated extracellularly, leading to the release of the mature cytokines from their noncovalently associated proregions, also known as latency-associated peptides (LAPs). The LAP region of TGF-beta1 was expressed in a baculovirus expression system and purified to homogeneity. In vitro assays of growth inhibition and gene induction mediated by TGF-beta3 demonstrate that recombinant TGF-beta1 LAP is a potent inhibitor of the activities of TGF-betal, -beta2, and -beta3. Effective dosages of LAP for 50% neutralization of TGF-beta activities range from 4.7- to 80-fold molar excess depending on the TGF-beta isoform and activity examined. Using 125I-labeled LAP, we show that the intraperitoneal application route is effective for systemic administration of LAP. Comparison of concentrations of LAP in tissues shows a homogenous pattern in most organs with the exception of heart and muscle, in which levels of LAP are 4- to 8-fold lower. In transgenic mice with elevated hepatic levels of bioactive TGF-betal, treatment with recombinant LAP completely reverses suppression of the early proliferative response induced by TGF-beta1 in remnant livers after partial hepatectomy. The results suggest that recombinant LAP is a potent inhibitor of bioactive TGF-beta both in vitro and in vivo, after intraperitoneal administration. Recombinant LAP should be a useful tool for novel approaches to study and therapeutically modulate pathophysiological processes mediated by TGF-beta3.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transcription factors c-myb and GATA-2 are both required for blood cell development in vivo and in vitro. However, very little is known on their mechanism(s) of action and whether they impact on complementary or overlapping pathways of hematopoietic proliferation and differentiation. We report here that embryonic stem (ES) cells transfected with c-myb or GATA-2 cDNAs, individually or in combination, underwent hematopoietic commitment and differentiation in the absence of added hematopoietic growth factors but that stimulation with c-kit and flt-3 ligands enhanced colony formation only in the c-myb transfectants. This enhancement correlated with c-kit and flt-3 surface receptor up-regulation in c-myb-(but not GATA-2-) transfected ES cells. Transfection of ES cells with either a c-myb or a GATA-2 antisense construct abrogated erythromyeloid colony-forming ability in methyl cellulose; however, introduction of a full-length GATA-2 or c-myb cDNA, respectively, rescued the hematopoiesis-deficient phenotype, although only c-myb-rescued ES cells expressed c-kit and flt-3 surface receptors and formed increased numbers of hematopoietic colonies upon stimulation with the cognate ligands. These results are in agreement with previous studies indicating a fundamental role of c-myb and GATA-2 in hematopoiesis. Of greater importance, our studies suggest that GATA-2 and c-myb exert their roles in hematopoietic gene regulation through distinct mechanisms of action in nonoverlapping pathways.