976 resultados para Greenhouse gardening


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sludge generated by sewage treatment which meets regulatory standards can be used in agriculture. With this understanding, the focus of this study is the evaluation of the agricultural characteristics and inorganic substances in excess activated sludge, which was subjected to drying in a greenhouse. The variables (factor) evaluated during the drying process were: type of sludge (digested or not digested), addition of lime to the sludge, and the physical layout and rotation of sludge in the greenhouse. The parameters monitored for this assessment were moisture, volatile solids and pH. The greenhouse cover and sides were made of translucent plastic to allow the penetration of solar radiation and prevent water from entering. A impermeable floor was used. The sludge was generated in sewage treatment plants located in the metropolitan region of Grande Vitoria, Espirito Santo, Brazil. The solar drying of wastewater sludge in a greenhouse presented satisfactory results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Understanding and quantifying ocean-atmosphere exchanges of the long-lived greenhouse gases carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are important for understanding the global biogeochemical cycles of carbon and nitrogen in the context of ongoing global climate change. In this chapter we summarise our current state of knowledge regarding the oceanic distributions, formation and consumption pathways, and oceanic uptake and emissions of CO2, N2O and CH4, with a particular emphasis on the upper ocean. We specifically consider the role of the ocean in regulating the tropospheric content of these important radiative gases in a world in which their tropospheric content is rapidly increasing and estimate the impact of global change on their present and future oceanic uptake and/or emission. Finally, we evaluate the various uncertainties associated with the most commonly used methods for estimating uptake and emission and identify future research needs.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The challenges posed by global climate change are motivating the investigation of strategies that can reduce the life cycle greenhouse gas (GHG) emissions of products and processes. While new construction materials and technologies have received significant attention, there has been limited emphasis on understanding how construction processes can be best managed to reduce GHG emissions. Unexpected disruptive events tend to adversely impact construction costs and delay project completion. They also tend to increase project GHG emissions. The objective of this paper is to investigate ways in which project GHG emissions can be reduced by appropriate management of disruptive events. First, an empirical analysis of construction data from a specific highway construction project is used to illustrate the impact of unexpected schedule delays in increasing project GHG emissions. Next, a simulation based methodology is described to assess the effectiveness of alternative project management strategies in reducing GHG emissions. The contribution of this paper is that it explicitly considers projects emissions, in addition to cost and project duration, in developing project management strategies. Practical application of the method discussed in this paper will help construction firms reduce their project emissions through strategic project management, and without significant investment in new technology. In effect, this paper lays the foundation for best practices in construction management that will optimize project cost and duration, while minimizing GHG emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highway infrastructure plays a significant role in society. The building and upkeep of America’s highways provide society the necessary means of transportation for goods and services needed to develop as a nation. However, as a result of economic and social development, vast amounts of greenhouse gas emissions (GHG) are emitted into the atmosphere contributing to global climate change. In recognizing this, future policies may mandate the monitoring of GHG emissions from public agencies and private industries in order to reduce the effects of global climate change. To effectively reduce these emissions, there must be methods that agencies can use to quantify the GHG emissions associated with constructing and maintaining the nation’s highway infrastructure. Current methods for assessing the impacts of highway infrastructure include methodologies that look at the economic impacts (costs) of constructing and maintaining highway infrastructure over its life cycle. This is known as Life Cycle Cost Analysis (LCCA). With the recognition of global climate change, transportation agencies and contractors are also investigating the environmental impacts that are associated with highway infrastructure construction and rehabilitation. A common tool in doing so is the use of Life Cycle Assessment (LCA). Traditionally, LCA is used to assess the environmental impacts of products or processes. LCA is an emerging concept in highway infrastructure assessment and is now being implemented and applied to transportation systems. This research focuses on life cycle GHG emissions associated with the construction and rehabilitation of highway infrastructure using a LCA approach. Life cycle phases of the highway section include; the material acquisition and extraction, construction and rehabilitation, and service phases. Departing from traditional approaches that tend to use LCA as a way to compare alternative pavement materials or designs based on estimated inventories, this research proposes a shift to a context sensitive process-based approach that uses actual observed construction and performance data to calculate greenhouse gas emissions associated with highway construction and rehabilitation. The goal is to support strategies that reduce long-term environmental impacts. Ultimately, this thesis outlines techniques that can be used to assess GHG emissions associated with construction and rehabilitation operations to support the overall pavement LCA.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most estimates of diffusive flux (F) of methane (CH4) and carbon dioxide (CO2) from lakes are based on single-point flux chamber measurements or on piston velocity (k) modeled from wind speed and single-point measurements of surface water gas concentrations (C-aq). We analyzed spatial variability of F of CH4 and CO2, as well as C-aq and k in 22 European lakes during late summer. F and k were higher in the lake centers, leading to considerable bias when extrapolating single-point chamber measurements to whole-lake estimates. The ratio of our empirical k estimates to wind speed-modeled k was related to lake size and shape, suggesting a lake morphology effect on the relationship between wind speed and k. This indicates that the error inherent to established wind speed models can be reduced by determining k and C-aq at multiple sites on lakes to calibrate wind speed-modeled k to the local system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The responses of carbon dioxide (CO2) and other climate variables to an emission pulse of CO2 into the atmosphere are often used to compute the Global Warming Potential (GWP) and Global Temperature change Potential (GTP), to characterize the response timescales of Earth System models, and to build reduced-form models. In this carbon cycle-climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses of different magnitudes injected under different conditions. The CO2 response shows the known rapid decline in the first few decades followed by a millennium-scale tail. For a 100 Gt-C emission pulse added to a constant CO2 concentration of 389 ppm, 25 ± 9% is still found in the atmosphere after 1000 yr; the ocean has absorbed 59 ± 12% and the land the remainder (16 ± 14%). The response in global mean surface air temperature is an increase by 0.20 ± 0.12 °C within the first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated response in CO2 at year 100 multiplied by its radiative efficiency, is 92.5 × 10−15 yr W m−2 per kg-CO2. This value very likely (5 to 95% confidence) lies within the range of (68 to 117) × 10−15 yr W m−2 per kg-CO2. Estimates for time-integrated response in CO2 published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree within 15% during the first 100 yr. The integrated CO2 response, normalized by the pulse size, is lower for pre-industrial conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size, background concentration, and model lead to uncertainties, the most important and subjective choice to determine AGWP of CO2 and GWP is the time horizon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework1. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4–0.5 °C by AD 2300; on top of 0.8–1.0 °C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22–27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.