848 resultados para Graph-theoretical descriptors
Resumo:
The NMR conformational study of 4',7-di-hydroxy-8-prenylflavan 1 was carried out in acetone-d6, DMSO-d6 and CDCl3 which enabled the proposition of three conformations, namely 1a, 1b and 1c, differing in the position of the prenyl group. Geometry optimizations performed using AM1 method showed that 1a (deltaHf = -86.2 kcal/mol) is as stable as 1b (deltaHf = -85.1 kcal/mol) and 1c (deltaHf = -85.4 kcal/mol). When the solvent was included, the calculations showed that the solute-solvent interactions could be explained either in the light of the electronic intermolecular delocalization or the electrostatic character between solute and solvent. Theoretical calculations (HF/6-31G*, deltaFT/BLYP/6-31G*, and deltaFT/B3LYP/6-31G*) showed that the combination of these types of interactions present in each solute-solvent system, dependent on the chemical properties of the solvent, lead to different spatial arrangements of the prenyl group, which in turn determined the conformation of 1.
Resumo:
This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits
Resumo:
Both the competitive environment and the internal structure of an industrial organization are typically included in the processes which describe the strategic management processes of the firm, but less attention has been paid to the interdependence between these views. Therefore, this research focuses on explaining the particular conditions of an industry change, which lead managers to realign the firm in respect of its environment for generating competitive advantage. The research question that directs the development of the theoretical framework is: Why do firms outsource some of their functions? The three general stages of the analysis are related to the following research topics: (i) understanding forces that shape the industry, (ii) estimating the impacts of transforming customer preferences, rivalry, and changing capability bases on the relevance of existing assets and activities, and emergence of new business models, and (iii) developing optional structures for future value chains and understanding general boundaries for market emergence. The defined research setting contributes to the managerial research questions “Why do firms reorganize their value chains?”, “Why and how are decisions made?” Combining Transaction Cost Economics (TCE) and Resource-Based View (RBV) within an integrated framework makes it possible to evaluate the two dimensions of a company’s resources, namely the strategic value and transferability. The final decision of restructuring will be made based on an analysis of the actual business potential of the outsourcing, where benefits and risks are evaluated. The firm focuses on the risk of opportunism, hold-up problems, pricing, and opportunities to reach a complete contract, and finally on the direct benefits and risks for financial performance. The supplier analyzes the business potential of an activity outside the specific customer, the amount of customer-specific investments, the service provider’s competitive position, abilities to revenue gains in generic segments, and long-term dependence on the customer.
Detailed crystallization study of co-precipitated Y1.47Gd1.53Fe5O12 and relevant magnetic properties
Resumo:
The crystallization process of co-precipitated Y1.5Gd1.5Fe5O12 powder heated up to 1000 ºC at rate of 5 °C min-1 was investigated. Above 810 ºC crystalline Y1.47Gd1.53Fe5O12 was obtained with a lattice parameter of 12.41 Å and a theoretical density of 5.84 g cm-3. Dry pressed rings were sintered at 1270 and 1320 ºC, increasing the grain-size from 3.1 to 6.5 µm, the theoretical density by 87.6 to 95.3% and decreasing Hc from 2.9725 to 1.4005 Oe. Additionally, Hc increased when the frequency of the hysteresis graph varied from 60 Hz to 10 kHz, the curie temperature was 282.4 ºC and Ms equalled 9.25 emu g-1 (0.17 kG) agreeing well with the Bs-value of the hysteresis graph and literature values.
Resumo:
The fusion of knowledge, the interrelationship of disciplines and, finally, the interaction of learning fields, provides new challenges for an auto denominated global society. The contemporary value of landscape, linked to the patent commodification of culture, the commercial construction of identities, the triumph of inauthenticity, of the induced representation or the economy of symbolism, open up great prospects for studying the symbolic value of landscape. The rapprochement of geographical praxis to the study of space intangibles, linked to the discovery of emotional geographies, besides the growing interest of communicational sciences on the territorial discourse, allow us to envisage a communicative study of landscape based on a fusion of geographical and communicational knowledge. The balancing of the variables: geography, landscape, emotion and communication, enables the progress towards analysing the emotionalisation of space to discern its intangible value, which emerges from the application of different communication techniques.
Resumo:
A systematic averaging procedure has been derived in order to obtain an integral form of conservation equations for dispersed multiphase flow, especially applicable to fluidized beds. A similar averaging method is applied further to formulate macroscopic integral equations, which can be used in one-dimensional and macroscopic multi dimensional models. Circulating fluid bed hydrodynamics has been studied experimentally and both macroscopic and microscopic flow profiles have been measured in a cold model. As an application of the theory, the one dimensional model has been used to study mass and momentum conservation of gas and solid in a circulating fluid bed. Axial solid mixing has also been modelled by the one dimensional model and mixing parameters have been evaluated.
Resumo:
Mental models play an important role in the evolution of an individual's so-called knowledge. Using such representations, students can explain, foresee, and attribute causality to observed phenomena. In the case of Chemistry, the ability to work mentally with models assumes great importance, due to the microscopic component that is characteristic of this science. With the objective of exploring students' ability to work with models, 27 students of the Chemistry Institute of UNESP were asked to describe the mechanisms of dissolution, in water, of NaCl, HCl and HCN, as well as the partial dissolution of I2. Due to difficulties of access to complex descriptors of these processes, each student was asked to explain the phenomena using words and drawings. The results of these investigations were analyzed, and enabled construction of a framework representing the Chemistry students' theoretical training, especially with respect to their most important transferred skill: an ability to model the physical world.
Resumo:
The electrochemical behavior of the interaction of amodiaquine with DNA on a carbon paste electrode was studied using voltametric techniques. In an acid medium, an electroactive adduct is formed when amodiaquine interacts with DNA. The anodic peak is dependent on pH, scan rate and the concentration of the pharmaceutical. Adduct formation is irreversible in nature, and preferentially occurs by interaction of the amodiaquine with the guanine group. Theoretical calculations for optimization of geometry, and DFT analyses and on the electrostatic potential map (EPM), were used in the investigation of adduct formation between amodiaquine and DNA.
Resumo:
The stability of N-propylbutanimine (1) was investigated under different experimental conditions. The acid-catalyzed self-condensation that produced the E-enimine (4) and Z-inimine (5) was studied by experimental analyses and theoretical calculations. Since the calculations for the energy of 5 indicated that it had a lower energy than 4, yet 4 was the principal product, the self-condensation of 1 must be kinetically controlled.
Resumo:
The excitation energy transfer between chlorophylls in major and minor antenna complexes of photosystem II (PSII) was investigated using quantum Fourier transforms. These transforms have an important role in the efficiency of quantum algorithms of quantum computers. The equation 2n=N was used to make the connection between excitation energy transfers using quantum Fourier transform, where n is the number of qubits required for simulation of transfers and N is the number of chlorophylls in the antenna complexes.
Resumo:
The B3LYP/6-31G (d) density functional theory (DFT) method was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. Heat of formation (HOF) and calculated density were estimated to evaluate detonation properties using Kamlet-Jacobs equations. Thermal stability of 3,6,7,8-tetranitro-3,6,7,8-tetraaza-tricyclo [3.1.1.1(2,4)]octane (TTTO) was investigated by calculating bond dissociation energy (BDE) at the unrestricted B3LYP/6-31G(d) level. Results showed the N-NO2 bond is a trigger bond during the thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to P2(1)/C space group, with cell parameters a = 8.239 Å, b = 8.079 Å, c = 16.860 Å, Z = 4 and r = 1.922 g cm-3. Both detonation velocity of 9.79 km s-1 and detonation pressure of 44.22 GPa performed similarly to CL-20. According to the quantitative standards of energetics and stability, TTTO essentially satisfies this requirement as a high energy density compound (HEDC).
Resumo:
Density functional theory (DFT) calculations at the B3LYP/6-31G** theoretical level were performed for a series of guanidine-fused bicyclic skeleton derivatives C4N6H8-n(NO2)n (n = 1 - 6). The heats of formation (HOFs) were calculated by isodesmic reactions, and the detonation properties were evaluated using the Kamlet - Jacobs equations. The bond dissociation energies were also analyzed to investigate the thermal stability and sensitivity of the compounds. The results show that all of the derivatives have high positive HOFs, compound G has the highest theoretical density, and compound F1 has the highest detonation velocity and detonation pressure. Considering both the detonation properties and thermal stabilities, compounds D1 and D4 (3 nitro substituents), E1 - E6 (4 nitro substituents), and G (6 nitro substituents) can be regarded as potential candidates for high-energy density materials.
Resumo:
Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.