911 resultados para Global navigation satellites system
Resumo:
What's known on the subject? And what does the study add? We have previously shown that percutaneous radiofrequency ablation guided by image-fusion technology allows for precise needle placement with real time ultrasound superimposed with pre-loaded imaging, removing the need for real-time CT or MR guidance. Emerging technology also allows real-time tracking of a treatment needle within an organ in a virtually created 3D format. To our knowledge, this is the first study utilising a sophisticated ultrasound-based navigation system that uses both image-fusion and real-time probe-tracking technologies for in-vivo renal ablative intervention.
Resumo:
Mode of access: Internet.
Resumo:
"May 1986."
Resumo:
Advances in communication, navigation and imaging technologies are expected to fundamentally change methods currently used to collect data. Electronic data interchange strategies will also minimize data handling and automatically update files at the point of capture. This report summarizes the outcome of using a multi-camera platform as a method to collect roadway inventory data. It defines basic system requirements as expressed by users, who applied these techniques and examines how the application of the technology met those needs. A sign inventory case study was used to determine the advantages of creating and maintaining the database and provides the capability to monitor performance criteria for a Safety Management System. The project identified at least 75 percent of the data elements needed for a sign inventory can be gathered by viewing a high resolution image.
Resumo:
This paper describes the real time global vision system for the robot soccer team the RoboRoos. It has a highly optimised pipeline that includes thresholding, segmenting, colour normalising, object recognition and perspective and lens correction. It has a fast ‘paint’ colour calibration system that can calibrate in any face of the YUV or HSI cube. It also autonomously selects both an appropriate camera gain and colour gains robot regions across the field to achieve colour uniformity. Camera geometry calibration is performed automatically from selection of keypoints on the field. The system achieves a position accuracy of better than 15mm over a 4m × 5.5m field, and orientation accuracy to within 1°. It processes 614 × 480 pixels at 60Hz on a 2.0GHz Pentium 4 microprocessor.
Resumo:
Ensuring the long term viability of reef environments requires essential monitoring of many aspects of these ecosystems. However, the sheer size of these unstructured environments (for example Australia’s Great Barrier Reef pose a number of challenges for current monitoring platforms which are typically remote operated and required significant resources and infrastructure. Therefore, a primary objective of the CSIRO robotic reef monitoring project is to develop and deploy a large number of AUV teams to perform broadscale reef surveying. In order to achieve this, the platforms must be cheap, even possibly disposable. This paper presents the results of a preliminary investigation into the performance of a low-cost sensor suite and associated processing techniques for vision and inertial-based navigation within a highly unstructured reef environment.
Resumo:
This thesis discusses various aspects of the integrity monitoring of GPS applied to civil aircraft navigation in different phases of flight. These flight phases include en route, terminal, non-precision approach and precision approach. The thesis includes four major topics: probability problem of GPS navigation service, risk analysis of aircraft precision approach and landing, theoretical analysis of Receiver Autonomous Integrity Monitoring (RAIM) techniques and RAIM availability, and GPS integrity monitoring at a ground reference station. Particular attention is paid to the mathematical aspects of the GPS integrity monitoring system. The research has been built upon the stringent integrity requirements defined by civil aviation community, and concentrates on the capability and performance investigation of practical integrity monitoring systems with rigorous mathematical and statistical concepts and approaches. Major contributions of this research are: • Rigorous integrity and continuity risk analysis for aircraft precision approach. Based on the joint probability density function of the affecting components, the integrity and continuity risks of aircraft precision approach with DGPS were computed. This advanced the conventional method of allocating the risk probability. • A theoretical study of RAIM test power. This is the first time a theoretical study on RAIM test power based on the probability statistical theory has been presented, resulting in a new set of RAIM criteria. • Development of a GPS integrity monitoring and DGPS quality control system based on GPS reference station. A prototype of GPS integrity monitoring and DGPS correction prediction system has been developed and tested, based on the A USN A V GPS base station on the roof of QUT ITE Building.
Resumo:
This paper presents a practical framework to synthesize multi-sensor navigation information for localization of a rotary-wing unmanned aerial vehicle (RUAV) and estimation of unknown ship positions when the RUAV approaches the landing deck. The estimation performance of the visual tracking sensor can also be improved through integrated navigation. Three different sensors (inertial navigation, Global Positioning System, and visual tracking sensor) are utilized complementarily to perform the navigation tasks for the purpose of an automatic landing. An extended Kalman filter (EKF) is developed to fuse data from various navigation sensors to provide the reliable navigation information. The performance of the fusion algorithm has been evaluated using real ship motion data. Simulation results suggest that the proposed method can be used to construct a practical navigation system for a UAV-ship landing system.
Resumo:
The challenge of persistent appearance-based navigation and mapping is to develop an autonomous robotic vision system that can simultaneously localize, map and navigate over the lifetime of the robot. However, the computation time and memory requirements of current appearance-based methods typically scale not only with the size of the environment but also with the operation time of the platform; also, repeated revisits to locations will develop multiple competing representations which reduce recall performance. In this paper we present a solution to the persistent localization, mapping and global path planning problem in the context of a delivery robot in an office environment over a one-week period. Using a graphical appearance-based SLAM algorithm, CAT-Graph, we demonstrate constant time and memory loop closure detection with minimal degradation during repeated revisits to locations, along with topological path planning that improves over time without using a global metric representation. We compare the localization performance of CAT-Graph to openFABMAP, an appearance-only SLAM algorithm, and the path planning performance to occupancy-grid based metric SLAM. We discuss the limitations of the algorithm with regard to environment change over time and illustrate how the topological graph representation can be coupled with local movement behaviors for persistent autonomous robot navigation.
Resumo:
University campuses have thousands of new students, staff and visitors every year. For those who are unfamiliar with the campus environment, an effective pedestrian navigation system is essential to orientate and guide them around the campus. Compared to traditional navigation systems, such as physical signposts and digital map kiosks, a mobile pedestrian navigation system provides advantages in terms of mobility, sensing capabilities, weather-awareness when the user is on the go. However, how best to design a mobile pedestrian navigation system for university campuses is still vague due to limited research in understanding how pedestrians interact with the system, and what information is required for traveling in a complex environment such as university campus. In this paper, we present a mobile pedestrian navigation system called QUT Nav. A field study with eight participants was run in a university campus context, aiming to identify key information required in a mobile pedestrian navigation system for user traveling in university campuses. It also investigated user's interactions and behaviours while they were navigating in the campus environment. Based on the results from the field study, a recommendation for designing mobile pedestrian navigation systems for university campuses is stated.
Resumo:
The term fashion system describes inter-relationships between production and consumption, illustrating how the production of fashion is a collective activity. For instance, Yuniya Kawamura (2011) notes systems for the production of fashion differ around the globe and are subject to constant change, and Jennifer Craik (1994, 6) draws attention to an ‘array of competing and intermeshing systems cutting across western and non-western cultures. In China, Shanghai’s nascent fashion system seeks to emulate the Eurocentric system of Fashion Weeks and industry support groups. It promises designers a platform for global competition, yet there are tensions from within. Interaction with a fashion system inevitably means becoming validated or legitimised. Legitimisation in turn depends upon gatekeepers who make aesthetic judgments about the status, quality, and cultural value of a designers work (Becker 2008). My paper offers a new perspective on legitimisation that is drawn mainly from my PhD research. I argue that some Chinese fashion designers are on the path to becoming global fashion designers because they have embraced a global aesthetic that resonates with the human condition, rather than the manufactured authenticity of a Eurocentric fashion system that perpetuates endless consumption. In this way, they are able to ‘self-legitimise’. I contend these designers are ‘designers for humans’, because they are able to look beyond the mythology of fashion brands, and the Eurocentric fashion system, where they explore the tensions of man and culture in their practice. Furthermore, their design ethos pursues beauty, truth and harmony in the Chinese philosophical sense, as well as incorporating financial return in a process that is still enacted through a fashion system. Accordingly, cultural tradition, heritage and modernity, while still valuable, have less impact on their practice.