996 resultados para Glial fibrillary acidic protein
Resumo:
In adult skeletal muscle, abluminal sprouting or longitudinal splitting of capillaries can be initiated separately by muscle overload and elevated microcirculation shear stress respectively. In the present study, gene and protein expression patterns associated with the different forms of angiogenesis were examined using a targeted gene array (Superarray), validated by quantitative RT (reverse transcription)-PCR and immunoblots. Sprouting angiogenesis induced large changes in expression levels in genes associated with extracellular matrix remodelling, such as MMP-2 (matrix metalloproteinase-2), TIMP (tissue inhibitor of metalloproteinases), SPARC (secreted protein, acidic and rich in cysteine) and thrombospondin. Changes in neuropilin, midkine and restin levels, which may underpin changes in endothelial morphology, were seen during splitting angiogenesis. Up-regulation of VEGF (vascular endothelial growth factor), Flk-1, angiopoietin-2 and PECAM-1 (platelet/endothelial cell adhesion molecule-1) was seen in both forms of angiogenesis, representing a common angiogenic response of endothelial cells. In conclusion, the present study demonstrates that general angiogenic signals from growth factors can be influenced by the local microenvironment resulting in differing forms of capillary growth to produce a co-ordinated expansion of the vascular bed.
Resumo:
Background: High grade serous carcinoma whether ovarian, tubal or primary peritoneal, continues to be the most lethal gynecologic malignancy in the USA. Although combination chemotherapy and aggressive surgical resection has improved survival in the past decade the majority of patients still succumb to chemo-resistant disease recurrence. It has recently been reported that amplification of 5q31-5q35.3 is associated with poor prognosis in patients with high grade serous ovarian carcinoma. Although the amplicon contains over 50 genes, it is notable for the presence of several members of the fibroblast growth factor signaling axis. In particular acidic fibroblast growth factor (FGF1) has been demonstrated to be one of the driving genes in mediating the observed prognostic effect of the amplicon in ovarian cancer patients. This study seeks to further validate the prognostic value of fibroblast growth receptor 4 (FGFR4), another candidate gene of the FGF/FGFR axis located in the same amplicon. The emphasis will be delineating the role the FGF1/FGFR4 signaling axis plays in high grade serous ovarian carcinoma; and test the feasibility of targeting the FGF1/FGFR4 axis therapeutically. Materials and Methods: Spearman and Pearson correlation studies on data generated from array CGH and transcriptome profiling analyses on 51 microdissected tumor samples were used to identify genes located on chromosome 5q31-35.3 that showed significant correlation between DNA and mRNA copy numbers. Significant correlation between FGF1 and FGFR4 DNA copy numbers was further validated by qPCR analysis on DNA isolated from 51 microdissected tumor samples. Immunolocalization and quantification of FGFR4 expression were performed on paraffin embedded tissue samples from 183 cases of high-grade serous ovarian carcinoma. The expression was then correlated with clinical data to assess impact on survival. The expression of FGF1 and FGFR4 in vitro was quantified by real-time PCR and western blotting in six high-grade serous ovarian carcinoma cell lines and compared to those in human ovarian surface epithelial cells to identify overexpression. The effect of FGF1 on these cell lines after serum starvation was quantified for in vitro cellular proliferation, migration/invasion, chemoresistance and survival utilizing a combination of commercially available colorimetric, fluorometric and electrical impedance assays. FGFR4 expression was then transiently silenced via siRNA transfection and the effects on response to FGF1, cellular proliferation, and migration were quantified. To identify relevant cellular pathways involved, responsive cell lines were transduced with different transcription response elements using the Cignal-Lenti reporter system and treated with FGF1 with and without transient FGFR4 knock down. This was followed by western blot confirmation for the relevant phosphoproteins. Anti-FGF1 antibodies and FGFR trap proteins were used to attempt inhibition of FGF mediated phenotypic changes and relevant signaling in vitro. Orthotopic intraperitoneal tumors were established in nude mice using serous cell lines that have been previously transfected with luciferase expressing constructs. The mice were then treated with FGFR trap protein. Tumor progression was then followed via bioluminescent imaging. The FGFR4 gene from 52 clinical samples was sequenced to screen for mutations. Results: FGFR4 DNA and mRNA copy numbers were significantly correlated and FGFR4 DNA copy number was significantly correlated with that of FGF1. Survival of patients with high FGFR4 expressing tumors was significantly shorter that those with low expression(median survival 28 vs 55 month p< 0.001) In a multivariate cox regression model FGFR expression significantly increased risk of death (HR 2.1, p<0.001). FGFR4 expression was significantly higher in all cell lines tested compared to HOSE, OVCA432 cell line in particular had very high expression suggesting amplification. FGF1 was also particularly overexpressed in OVCA432. FGF1 significantly increased cell survival after serum deprivation in all cell lines. Transient knock down of FGFR4 caused significant reduction in cell migration and proliferation in vitro and significantly decreased the proliferative effects of FGF1 in vitro. FGFR1, FGFR4 traps and anti-FGF1 antibodies did not show activity in vitro. OVCA432 transfected with the cignal lenti reporter system revealed significant activation of MAPK, NFkB and WNT pathways, western blotting confirmed the results. Reverse phase protein array (RPPA) analysis also showed activation of MAPK, AKT, WNT pathways and down regulation of E Cadherin. FGFR trap protein significantly reduced tumor growth in vivo in an orthotopic mouse model. Conclusions: Overexpression and amplification of several members of the FGF signaling axis present on the amplicon 5q31-35.3 is a negative prognostic indicator in high grade serous ovarian carcinoma and may drive poor survival associated with that amplicon. Activation of The FGF signaling pathway leads to downstream activation of MAPK, AKT, WNT and NFkB pathways leading to a more aggressive cancer phenotype with increased tumor growth, evasion of apoptosis and increased migration and invasion. Inhibition of FGF pathway in vivo via FGFR trap protein leads to significantly decreased tumor growth in an orthotopic mouse model.
Resumo:
Overexpression of insulin-like growth factor binding protein 2 (IGFBP2) is associated with progression and poor survival in many types of human cancer (such as prostate, ovarian, adrenocortical, breast, colorectal carcinomas, leukemia, and high-grade gliomas). We therefore hypothesize that IGFBP2 is a key regulator of tumor progression. We tested our hypothesis in gliomas using the somatic gene transfer RCAS-tva mouse model system, which permits the introduction of specific genes into specific, cell lineages, in this case glial cells (RCAS: Replication competent avian sarcomavirus, tv-a: avian RCAS virus receptor). Mice are transgenic and harbor the tv-a receptor under the control of a glial-specific promoter and study genes are cloned into the RCAS vector for post-natal intracranial delivery. For these experiments, the study genes were IGFBP2, platelet-derived growth factor B (PDGFB), K-Ras, Akt, and IIp45 (invasion inhibitory protein 45 kDa; known to bind and block IGFBP2 activity), which were delivered separately and in combination. Our results show that PDGFB signaling leads exclusively to the formation of low-grade (WHO grade II) oligodendrogliomas. PDGFB delivered in combination with IGFBP2 results in the formation of anaplastic oligodendrogliomas (WHO grade III), which are characterized by increased cellularity, vascular proliferation, small regions of necrosis, increased mitotic activity, and increased activation of the Akt pathway. IIp45 injected in combination with PDGFB and IGFBP2 ablates IGFBP2-induced tumor progression, which results in formation of low-grade oligodendrogliomas, and an overall reduction in tumor incidence. K-Ras expression was required to form astrocytomas with either IGFBP2 or Akt, indicating the activation of two separate pathways is necessary for gliomagenesis. In ex vivo experiments, blockade of Akt by an inhibitor led to decreased viability of cells co-expressing IGFBP2 versus PDGFB expression alone. This study provides definitive evidence, for the first time, that: (1) IGFBP2 plays a role in activation of the Akt pathway, (2) IGFBP2 collaborates with K-Ras or PDGFB in the development and progression of two major types of glioma, and (3) IGFBP2-induced tumor progression can be ablated by IIp45 or by specific inhibition of the Akt pathway. ^
Resumo:
Alternative RNA splicing plays an integral role in cell fate determination and function, especially in the cells of the brain. Errors in RNA processing contribute to diseases such as cancer, where it leads to the production of oncogenic proteins or the loss of tumor suppressors. In silica mining suggests that hundreds of splice isoforms are misexpressed in the glial cell-derived glioma. However, there is little experimental evidence of the prevalence and contribution of these changes and whether they contribute to the formation and progression of this devastating malignancy. To determine the frequency of these aberrant events, global profiling of alternative RNA splice patterns in glioma and nontumor brain was conducted using an exon array. Most splicing changes were less than 5-fold in magnitude and 14 cassette exon events were validated, including 7 previously published events. To determine the possible causes of missplicing, the differential expression levels of splicing factors in these two tissues were also analyzed. Six RNA splicing factors had greater than 2-fold changes in expression. The highest differentially expressed factor was polypyrimidine tract binding protein-1 (PTB). Evaluation by immunohistochemistry determined that this factor was elevated in both early and late stages of glioma. Glial cell-specific PTB expression in the adult brain led me to examine the role of PTB in gliomagenesis. Downregulation of PTB slowed glioma cell proliferation and migration and enhanced cell adhesion to fibronectin and vitronectin. To determine whether PTB was affecting these processes through splicing, genome-wide exon expression levels were correlated with PTB levels. Surprisingly, previously reported PTB target transcripts were insensitive to changes in PTB levels in both patient samples and PTB-depleted glioma cells. Only one validated glioma-specific splice target, RTN4/Nogo, had a significant PTB-mediated splicing change. Downregulation of PTB enhanced inclusion of its alternative exon 3, which encodes an auxiliary domain within a neurite inhibitor protein. Overexpression of this splice isoform in glioma cells slowed proliferation in a manner similar to that observed in PTB knockdown cells. In summary, aberrant expression of splicing factors such as PTB in glioma may elicit changes in splicing patterns that enhance tumorigenesis. ^
Resumo:
Cell growth and differentiation are complex and well-organized processes in which cells respond to stimuli from the environment by carrying out genetic programs. Transcription factors with helix-loop-helix (HLH) motif play critical roles in controlling the expression of genes involved in lineage commitment, cell fate determination, proliferation and tumorigenesis. This study has examined the roles of GCIP (CCNDBP1) in cell differentiation and tumorigenesis. GCIP is a recently identified HLH-leucine zipper protein without a basic region like the Id family of proteins. However, GCIP shares little sequence homology with the Id proteins and has domains with high acidic amino acids and leucine-rich regions following the HLH domain like c-Myc. Here we firstly demonstrate that GCIP is a transcription regulator related to muscle differentiation program. Overexpression of GCIP in C2C12 cells not only promotes myotube formation but also upregulates myogenic differentiation biomarkers, including MHC and myogenein. On the other hand, our finding also suggests that GCIP is a potential tumor suppressor related to cell cycle control. Expression of GCIP was significantly down-regulated in colon tumors as compared to normal colon tissues. Overexpression of GCIP in SW480 colon cancer cell line resulted in a significant inhibition on tumor cell colony formation on soft agar assays while silencing of GCIP expression by siRNA can promote cell proliferation and colony formation. In addition, results from transgenic mice specifically expressing GCIP in liver also support the idea that GCIP is involved in the early stage of hepatocarcinogenesis and decreased susceptibility to chemical hepatocarcinogenesis. ^
Resumo:
A hierarchy of residue density assessments and packing properties in protein structures are contrasted, including a regular density, a variety of charge densities, a hydrophobic density, a polar density, and an aromatic density. These densities are investigated by alternative distance measures and also at the interface of multiunit structures. Amino acids are divided into nine structural categories according to three secondary structure states and three solvent accessibility levels. To take account of amino acid abundance differences across protein structures, we normalize the observed density by the expected density defining a density index. Solvent accessibility levels exert the predominant influence in determinations of the regular residue density. Explicitly, the regular density values vary approximately linearly with respect to solvent accessibility levels, the linearity parameters depending on the amino acid. The charge index reveals pronounced inequalities between lysine and arginine in their interactions with acidic residues. The aromatic density calculations in all structural categories parallel the regular density calculations, indicating that the aromatic residues are distributed as a random sample of all residues. Moreover, aromatic residues are found to be over-represented in the neighborhood of all amino acids. This result might be attributed to nucleation sites and protein stability being substantially associated with aromatic residues.
Resumo:
We describe the identification of Neuregulin-3 (NRG3), a novel protein that is structurally related to the neuregulins (NRG1). The NRG1/neuregulins are a diverse family of proteins that arise by alternative splicing from a single gene. These proteins play an important role in controlling the growth and differentiation of glial, epithelial, and muscle cells. The biological effects of NRG1 are mediated by receptor tyrosine kinases ErbB2, ErbB3, and ErbB4. However, genetic studies have suggested that the activity of ErbB4 may also be regulated in the central nervous system by a ligand distinct from NRG1. NRG3 is predicted to contain an extracellular domain with an epidermal growth factor (EGF) motif, a transmembrane domain, and a large cytoplasmic domain. We show that the EGF-like domain of NRG3 binds to the extracellular domain of ErbB4 in vitro. Moreover, NRG3 binds to ErbB4 expressed on cells and stimulates tyrosine phosphorylation of this receptor. The expression of NRG3 is highly restricted to the developing and adult nervous system. These data suggest that NRG3 is a novel, neural-enriched ligand for ErbB4.
Resumo:
Although d amino acids are prominent in bacteria, they generally are thought not to occur in mammals. Recently, high levels of d-serine have been found in mammalian brain where it activates glutamate/N-methyl-d-aspartate receptors by interacting with the “glycine site” of the receptor. Because amino acid racemases are thought to be restricted to bacteria and insects, the origin of d-serine in mammals has been puzzling. We now report cloning and expression of serine racemase, an enzyme catalyzing the formation of d-serine from l-serine. Serine racemase is a protein representing an additional family of pyridoxal-5′ phosphate-dependent enzymes in eukaryotes. The enzyme is enriched in rat brain where it occurs in glial cells that possess high levels of d-serine in vivo. Occurrence of serine racemase in the brain demonstrates the conservation of d-amino acid metabolism in mammals with implications for the regulation of N-methyl-d-aspartate neurotransmission through glia-neuronal interactions.
Resumo:
Growth of mouse neural crest cultures in the presence of glial cell line-derived neurotrophic factor (GDNF) resulted in a dramatic dose-dependent increase in the number of tyrosine hydroxylase (TH)-positive cells that developed when 5% chicken embryo extract was present in the medium. In contrast, growth in the presence of bone morphogenetic protein (BMP)-2, BMP-4, BMP-6, transforming growth factor (TGF) β1, TGF-β2, and TGF-β3 elicited no increase in the number of TH-positive cells. The TH-positive cells that developed in the presence of GDNF had neuronal morphology and contained the middle and low molecular weight neurofilament proteins. Numerous TH-negative cells with the morphology of neurons also were observed in GDNF-treated cultures. Analysis revealed that the period from 6 to 12 days in vitro was the critical time for exposure to GDNF to generate the increase in TH-positive cell number. The growth factors neurotrophin-3 and fibroblast growth factor-2 elicited increases in the number of TH-positive cells similar to that seen in response to GDNF. In contrast, nerve growth factor was unable to substitute for GDNF. These findings extend the previously reported biological activities of GDNF by showing that it can act on mouse neural crest cultures to promote the development of neurons.
Resumo:
Mutations in the amyloid precursor protein (APP) gene cause early-onset familial Alzheimer disease (AD) by affecting the formation of the amyloid β (Aβ) peptide, the major constituent of AD plaques. We expressed human APP751 containing these mutations in the brains of transgenic mice. Two transgenic mouse lines develop pathological features reminiscent of AD. The degree of pathology depends on expression levels and specific mutations. A 2-fold overexpression of human APP with the Swedish double mutation at positions 670/671 combined with the V717I mutation causes Aβ deposition in neocortex and hippocampus of 18-month-old transgenic mice. The deposits are mostly of the diffuse type; however, some congophilic plaques can be detected. In mice with 7-fold overexpression of human APP harboring the Swedish mutation alone, typical plaques appear at 6 months, which increase with age and are Congo Red-positive at first detection. These congophilic plaques are accompanied by neuritic changes and dystrophic cholinergic fibers. Furthermore, inflammatory processes indicated by a massive glial reaction are apparent. Most notably, plaques are immunoreactive for hyperphosphorylated tau, reminiscent of early tau pathology. The immunoreactivity is exclusively found in congophilic senile plaques of both lines. In the higher expressing line, elevated tau phosphorylation can be demonstrated biochemically in 6-month-old animals and increases with age. These mice resemble major features of AD pathology and suggest a central role of Aβ in the pathogenesis of the disease.
Resumo:
rRNA synthesis by RNA polymerase I requires both the promoter selectivity factor 1, which is composed of TATA binding protein (TBP) and three TBP-associated factors, and the activator upstream binding factor (UBF). Whereas there is strong evidence implicating a role for phosphorylation of UBF in the control of growth-induced increases in rRNA transcription, the mechanism of this effect is not known. Results of immunoprecipitation studies with TBP antibodies showed increased recovery of phosphorylated UBF from growth-stimulated smooth muscle cells. Moreover, using an immobilized protein-binding assay, we found that phosphorylation of UBF in vivo in response to stimulation with different growth factors or in vitro with smooth muscle cell nuclear extract increased its binding to TBP. Finally, we demonstrated that UBF–TBP binding depended on the C-terminal ‘acidic tail’ of UBF that was hyperphosphorylated at multiple serine sites after growth factor stimulation. Results of these studies suggest that phosphorylation of UBF and subsequent binding to TBP represent a key regulatory step in control of growth-induced increases in rRNA synthesis.
Resumo:
The CHL1 (NRT1) gene of Arabidopsis encodes a nitrate-inducible nitrate transporter that is thought to be a component of the low-affinity (mechanism II) nitrate-uptake system in plants. A search was performed to find high-affinity (mechanism I) uptake mutants by using chlorate selections on plants containing Tag1 transposable elements. Chlorate-resistant mutants defective in high-affinity nitrate uptake were identified, and one had a Tag1 insertion in chl1, which was responsible for the phenotype. Further analysis showed that chl1 mutants have reduced high-affinity uptake in induced plants and are missing a saturable component of the constitutive, high-affinity uptake system in addition to reduced low-affinity uptake. The contribution of CHL1 to constitutive high-affinity uptake is higher when plants are grown at more acidic pH, conditions that increase the level of CHL1 mRNA. chl1 mutants show reduced membrane depolarization in root epidermal cells in response to low (250 μM) and high (10 mM) concentrations of nitrate. Low levels of nitrate (100 μM) induce a rapid increase in CHL1 mRNA. These results show that CHL1 is an important component of both the high-affinity and the low-affinity nitrate-uptake systems and indicate that CHL1 may be a dual-affinity nitrate transporter.
Resumo:
Bcl-2 is the prototypical member of a large family of apoptosis-regulating proteins, consisting of blockers and promoters of cell death. The three-dimensional structure of a Bcl-2 homologue, Bcl-XL, suggests striking similarity to the pore-forming domains of diphtheria toxin and the bacterial colicins, prompting exploration of whether Bcl-2 is capable of forming pores in lipid membranes. Using chloride efflux from KCl-loaded unilamellar lipid vesicles as an assay, purified recombinant Bcl-2 protein exhibited pore-forming activity with properties similar to those of the bacterial toxins, diphtheria toxin, and colicins, i.e., dependence on low pH and acidic lipid membranes. In contrast, a mutant of Bcl-2 lacking the two core hydrophobic α-helices (helices 5 and 6), predicted to be required for membrane insertion and channel formation, produced only nonspecific effects. In planar lipid bilayers, where detection of single channels is possible, Bcl-2 formed discrete ion-conducting, cation-selective channels, whereas the Bcl-2 (Δh5, 6) mutant did not. The most frequent conductance observed (18 ± 2 pS in 0.5 M KCl at pH 7.4) is consistent with a four-helix bundle structure arising from Bcl-2 dimers. However, larger channel conductances (41 ± 2 pS and 90 ± 10 pS) also were detected with progressively lower occurrence, implying the step-wise formation of larger oligomers of Bcl-2 in membranes. These findings thus provide biophysical evidence that Bcl-2 forms channels in lipid membranes, suggesting a novel function for this antiapoptotic protein.
Resumo:
The objectives of this and the following paper are to identify commonalities and disparities of the extended environment of mononuclear metal sites centering on Cu, Fe, Mn, and Zn. The extended environment of a metal site within a protein embodies at least three layers: the metal core, the ligand group, and the second shell, which is defined here to consist of all residues distant less than 3.5 Å from some ligand of the metal core. The ligands and second-shell residues can be characterized in terms of polarity, hydrophobicity, secondary structures, solvent accessibility, hydrogen-bonding interactions, and membership in statistically significant residue clusters of different kinds. Findings include the following: (i) Both histidine ligands of type I copper ions exclusively attach the Nδ1 nitrogen of the histidine imidazole ring to the metal, whereas histidine ligands for all mononuclear iron ions and nearly all type II copper ions are ligated via the Nɛ2 nitrogen. By contrast, multinuclear copper centers are coordinated predominantly by histidine Nɛ2, whereas diiron histidine contacts are predominantly Nδ1. Explanations in terms of steric differences between Nδ1 and Nɛ2 are considered. (ii) Except for blue copper (type I), the second-shell composition favors polar residues. (iii) For blue copper, the second shell generally contains multiple methionine residues, which are elements of a statistically significant histidine–cysteine–methionine cluster. Almost half of the second shell of blue copper consists of solvent-accessible residues, putatively facilitating electron transfer. (iv) Mononuclear copper atoms are never found with acidic carboxylate ligands, whereas single Mn2+ ion ligands are predominantly acidic and the second shell tends to be mostly buried. (v) The extended environment of mononuclear Fe sites often is associated with histidine–tyrosine or histidine–acidic clusters.
Resumo:
Our study of the extended metal environment, particularly of the second shell, focuses in this paper on zinc sites. Key findings include: (i) The second shell of mononuclear zinc centers is generally more polar than hydrophobic and prominently features charged residues engaged in an abundance of hydrogen bonding with histidine ligands. Histidine–acidic or histidine–tyrosine clusters commonly overlap the environment of zinc ions. (ii) Histidine tautomeric metal bonding patterns in ligating zinc ions are mixed. For example, carboxypeptidase A, thermolysin, and sonic hedgehog possess the same ligand group (two histidines, one unibidentate acidic ligand, and a bound water), but their histidine tautomeric geometries markedly differ such that the carboxypeptidase A makes only Nδ1 contacts, thermolysin makes only Nɛ2 contacts, and sonic hedgehog uses one of each. Thus the presence of a similar ligand cohort does not necessarily imply the same topology or function at the active site. (iii) Two close histidine ligands HXmH, m ≤ 5, rarely both coordinate a single metal ion in the Nδ1 tautomeric conformation, presumably to avoid steric conflicts. Mononuclear zinc sites can be classified into six types depending on the ligand composition and geometry. Implications of the results are discussed in terms of divergent and convergent evolution.