750 resultados para Geo-mechanical classifications
Resumo:
OBJECTIVE: Our aim was to compare, in a non randomized study, the surgical outcome in elderly patients with mechanical (Group 1; n=83) and bioprosthetic valve implants (Group 2; n=136). METHODS: During a three year period, 219 patients >75 years underwent Aortic Valve Replacement. The groups matched according to age, sex, comorbidity, valve pathology and concomitant Coronary Artery Bypass Surgery. Follow-up was a total of 469 patient-years (mean follow-up 2.1 years, maximum 4,4 years). RESULTS: Operative mortality was zero and the overall early mortality was 2.3 % (within 30 days). Actuarial survival was 87.5 ± 4.0% and 66.1 ± 7.7% (NS) at 4 years in Group 1 and Group 2, respectively. Freedom from valve-related death was 88.9 ± 3.8% in Group 1 and 69.9±7.9% (NS) in Group 2 at 4 years. CONCLUSION: Aortic Valve Replacement in the elderly (>75 years) is a safe procedure even in cases where concomitant coronary artery revascularization is performed. Only a few anticoagulant-related complications were reported and this may indicate that selected groups of elderly patients with significant life expectancy may benefit from mechanical implants .
Resumo:
Supplementary data associated with this article can be found,in the online version, at http://dx.doi.org/10.1016/j.ijbiomac.2016.05.018.
Resumo:
OBJECTIVE: To investigate whether patients with heart valve prostheses and similar International Normalized Ratios (INR) have the same level of protection against thromboembolic events, that is, whether the anticoagulation intensity is related to the intensity of hypercoagulability supression. METHODS: INR and plasma levels of prothrombin fragment 1+2 (F1+2) were assessed in blood samples of 27 patients (7 with mechanical heart valves and 20 with biological heart valves) and 27 blood samples from healthy donors that were not taking any medication. RESULTS: Increased levels of F1+2 were observed in blood samples of 5 patients with heart valve prostheses taking warfarin. These findings reinforce the idea that even though patients may have INRs, within the therapeutic spectrum, they are not free from new thromboembolic events. CONCLUSION: Determination of the hypercoagulability marker F1+2 might result in greater efficacy and safety for the use of oral anticoagulants, resulting in improved quality of life for patients.
Resumo:
OBJECTIVE: To analyze parameters of respiratory system mechanics and oxygenation and cardiovascular alterations involved in weaning tracheostomized patients from long-term mechanical ventilation after cardiac surgery. METHODS: We studied 45 patients in their postoperative period of cardiac surgery, who required long-term mechanical ventilation for more than 10 days and had to undergo tracheostomy due to unsuccessful weaning from mechanical ventilation. The parameters of respiratory system mechanics, oxigenation and the following factors were analyzed: type of surgical procedure, presence of cardiac dysfunction, time of extracorporeal circulation, and presence of neurologic lesions. RESULTS: Of the 45 patients studied, successful weaning from mechanical ventilation was achieved in 22 patients, while the procedure was unsuccessful in 23 patients. No statistically significant difference was observed between the groups in regard to static pulmonary compliance (p=0.23), airway resistance (p=0.21), and the dead space/tidal volume ratio (p=0.54). No difference was also observed in regard to the variables PaO2/FiO2 ratio (p=0.86), rapid and superficial respiration index (p=0.48), and carbon dioxide arterial pressure (p=0.86). Cardiac dysfunction and time of extracorporeal circulation showed a significant difference. CONCLUSION: Data on respiratory system mechanics and oxygenation were not parameters for assessing the success or failure. Cardiac dysfunction and time of cardiopulmonary bypass, however, significantly interfered with the success in weaning patients from mechanical ventilation.
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2009
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2015
Resumo:
v.53:no.4(1968)
Resumo:
Consider a Riemannian manifold equipped with an infinitesimal isometry. For this setup, a unified treatment is provided, solely in the language of Riemannian geometry, of techniques in reduction, linearization, and stability of relative equilibria. In particular, for mechanical control systems, an explicit characterization is given for the manner in which reduction by an infinitesimal isometry, and linearization along a controlled trajectory "commute." As part of the development, relationships are derived between the Jacobi equation of geodesic variation and concepts from reduction theory, such as the curvature of the mechanical connection and the effective potential. As an application of our techniques, fiber and base stability of relative equilibria are studied. The paper also serves as a tutorial of Riemannian geometric methods applicable in the intersection of mechanics and control theory.
Resumo:
The cytoskeleton, composed of actin filaments, intermediate filaments, and microtubules, is a highly dynamic supramolecular network actively involved in many essential biological mechanisms such as cellular structure, transport, movements, differentiation, and signaling. As a first step to characterize the biophysical changes associated with cytoskeleton functions, we have developed finite elements models of the organization of the cell that has allowed us to interpret atomic force microscopy (AFM) data at a higher resolution than that in previous work. Thus, by assuming that living cells behave mechanically as multilayered structures, we have been able to identify superficial and deep effects that could be related to actin and microtubule disassembly, respectively. In Cos-7 cells, actin destabilization with Cytochalasin D induced a decrease of the visco-elasticity close to the membrane surface, while destabilizing microtubules with Nocodazole produced a stiffness decrease only in deeper parts of the cell. In both cases, these effects were reversible. Cell softening was measurable with AFM at concentrations of the destabilizing agents that did not induce detectable effects on the cytoskeleton network when viewing the cells with fluorescent confocal microscopy. All experimental results could be simulated by our models. This technology opens the door to the study of the biophysical properties of signaling domains extending from the cell surface to deeper parts of the cell.
Resumo:
Report for the scientific sojourn carried out at the Department of Structure and Constituents of Matter during 2007.The main focus of the work was on phenomena related to nano-electromechanical processes that take place on a cellular level. Additionally, it has also been performed independent work related to charge and energy transfer in bio molecules, energy transfer in coupled spin systems as well as electrodynamics of nonlinear metamaterials.
Resumo:
In order to evaluate the reliability of histopathological classifications of cutaneous and mucocutaneous leishmaniasis the authors compared the histopathological patterns of two biopsies taken simultaneously from the same patient, and classified the material according to Ridley et al. (1980), to Magalhães et al. (1986a), and to a more simplified classification with only three patterns. District histopathological aspects, were observed in different lesions or even in the same lesion. The authors concluded that histopathological patterns do not represent a stage of tegumentary leishmaniasis, thus they can not be correlated with prognosis and therapeutical response as suggested in the literature.
Resumo:
PURPOSE: The aim of this study was to compare the mechanical external work (per kg) and pendular energy transduction at preferred walking speed (PWS) in obese versus normal body mass subjects to investigate whether obese adults adopt energy conserving gait mechanics. METHODS: The mechanical external work (Wext) and the fraction of mechanical energy recovered by the pendular mechanism (Rstep) were computed using kinematic data acquired by an optoelectronic system and were compared in 30 obese (OG; body mass index [BMI] = 39.6 +/- 0.6 kg m(-2); 29.5 +/- 1.3 yr) and 19 normal body mass adults (NG; BMI = 21.4 +/- 0.5 kg m(-2); 31.2 +/- 1.2 yr) walking at PWS. RESULTS: PWS was significantly lower in OG (1.18 +/- 0.02 m s(-1)) than in NG (1.33 +/- 0.02 m s(-1); P <or= 0.001). There was no significant difference in Wext per unit mass between groups (OG: 0.36 +/- 0.03 J kg(-1) m(-1); NG: 0.31 +/- 0.02 J kg(-1) m(-1); P = 0.12). Rstep was significantly lower in OG (68.4% +/- 2.0%) compared with NG (74.4% +/- 1.0%; P = 0.01). In OG only, Wext per unit mass was positively correlated with PWS (r = 0.57; P < 0.001). CONCLUSION: Obese adults do not appear to alter their gait to improve pendular energy transduction and may select slower PWS to reduce mechanical and metabolic work.
Resumo:
The present review will briefly summarize the interplay between coagulation and inflammation, highlighting possible effects of direct inhibition of factor Xa and thrombin beyond anticoagulation. Additionally, the rationale for the use of the new direct oral anticoagulants (DOACs) for indications such as cancer-associated venous thromboembolism (CAT), mechanical heart valves, thrombotic anti-phospholipid syndrome (APS), and heparin-induced thrombocytopenia (HIT) will be explored. Published data on patients with cancer or mechanical heart valves treated with DOAC will be discussed, as well as planned studies in APS and HIT. Although at the present time published evidence is insufficient for recommending DOAC in the above-mentioned indications, there are good arguments in favor of clinical trials investigating their efficacy in these contexts. Direct inhibition of factor Xa or thrombin may reveal interesting effects beyond anticoagulation as well.