957 resultados para Genetic programming (Computer science)
Resumo:
We have used various computational methodologies including molecular dynamics, density functional theory, virtual screening, ADMET predictions and molecular interaction field studies to design and analyze four novel potential inhibitors of farnesyltransferase (FTase). Evaluation of two proposals regarding their drug potential as well as lead compounds have indicated them as novel promising FTase inhibitors, with theoretically interesting pharmacotherapeutic profiles, when Compared to the very active and most cited FTase inhibitors that have activity data reported, which are launched drugs or compounds in clinical tests. One of our two proposals appears to be a more promising drug candidate and FTase inhibitor, but both derivative molecules indicate potentially very good pharmacotherapeutic profiles in comparison with Tipifarnib and Lonafarnib, two reference pharmaceuticals. Two other proposals have been selected with virtual screening approaches and investigated by LIS, which suggest novel and alternatives scaffolds to design future potential FTase inhibitors. Such compounds can be explored as promising molecules to initiate a research protocol in order to discover novel anticancer drug candidates targeting farnesyltransferase, in the fight against cancer. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Cpfg is a program for simulating and visualizing plant development, based on the theory of L-systems. A special-purpose programming language, used to specify plant models, is an essential feature of cpfg. We review postulates of L-system theory that have influenced the design of this language. We then present the main constructs of this language, and evaluate it from a user's perspective.
Resumo:
This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.
Resumo:
A graph clustering algorithm constructs groups of closely related parts and machines separately. After they are matched for the least intercell moves, a refining process runs on the initial cell formation to decrease the number of intercell moves. A simple modification of this main approach can deal with some practical constraints, such as the popular constraint of bounding the maximum number of machines in a cell. Our approach makes a big improvement in the computational time. More importantly, improvement is seen in the number of intercell moves when the computational results were compared with best known solutions from the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The refinement calculus provides a framework for the stepwise development of imperative programs from specifications. In this paper we study a refinement calculus for deriving logic programs. Dealing with logic programs rather than imperative programs has the dual advantages that, due to the expressive power of logic programs, the final program is closer to the original specification, and each refinement step can achieve more. Together these reduce the overall number of derivation steps. We present a logic programming language extended with specification constructs (including general predicates, assertions, and types and invariants) to form a wide-spectrum language. General predicates allow non-executable properties to be included in specifications. Assertions, types and invariants make assumptions about the intended inputs of a procedure explicit, and can be used during refinement to optimize the constructed logic program. We provide a semantics for the extended logic programming language and derive a set of refinement laws. Finally we apply these to an example derivation.
Resumo:
In this work, we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) systems and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to improve the precision of the similarity queries. We refer to the association rule-based method to improve CBIR systems proposed here as Feature selection through Association Rules (FAR). To improve CAD systems, we propose the Image Diagnosis Enhancement through Association rules (IDEA) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can either accelerate the process of diagnosing or to strengthen a hypothesis, increasing the probability of a prescribed treatment be successful. Two new algorithms are proposed to support the IDEA method: to pre-process low-level features and to propose a preliminary diagnosis based on association rules. We performed several experiments to validate the proposed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Incremental parsing has long been recognized as a technique of great utility in the construction of language-based editors, and correspondingly, the area currently enjoys a mature theory. Unfortunately, many practical considerations have been largely overlooked in previously published algorithms. Many user requirements for an editing system necessarily impact on the design of its incremental parser, but most approaches focus only on one: response time. This paper details an incremental parser based on LR parsing techniques and designed for use in a modeless syntax recognition editor. The nature of this editor places significant demands on the structure and quality of the document representation it uses, and hence, on the parser. The strategy presented here is novel in that both the parser and the representation it constructs are tolerant of the inevitable and frequent syntax errors that arise during editing. This is achieved by a method that differs from conventional error repair techniques, and that is more appropriate for use in an interactive context. Furthermore, the parser aims to minimize disturbance to this representation, not only to ensure other system components can operate incrementally, but also to avoid unfortunate consequences for certain user-oriented services. The algorithm is augmented with a limited form of predictive tree-building, and a technique is presented for the determination of valid symbols for menu-based insertion. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
This paper presents the multi-threading and internet message communication capabilities of Qu-Prolog. Message addresses are symbolic and the communications package provides high-level support that completely hides details of IP addresses and port numbers as well as the underlying TCP/IP transport layer. The combination of the multi-threads and the high level inter-thread message communications provide simple, powerful support for implementing internet distributed intelligent applications.
Resumo:
The QU-GENE Computing Cluster (QCC) is a hardware and software solution to the automation and speedup of large QU-GENE (QUantitative GENEtics) simulation experiments that are designed to examine the properties of genetic models, particularly those that involve factorial combinations of treatment levels. QCC automates the management of the distribution of components of the simulation experiments among the networked single-processor computers to achieve the speedup.
Resumo:
In this paper we describe a distributed object oriented logic programming language in which an object is a collection of threads deductively accessing and updating a shared logic program. The key features of the language, such as static and dynamic object methods and multiple inheritance, are illustrated through a series of small examples. We show how we can implement object servers, allowing remote spawning of objects, which we can use as staging posts for mobile agents. We give as an example an information gathering mobile agent that can be queried about the information it has so far gathered whilst it is gathering new information. Finally we define a class of co-operative reasoning agents that can do resource bounded inference for full first order predicate logic, handling multiple queries and information updates concurrently. We believe that the combination of the concurrent OO and the LP programming paradigms produces a powerful tool for quickly implementing rational multi-agent applications on the internet.
Resumo:
Combinatorial optimization problems share an interesting property with spin glass systems in that their state spaces can exhibit ultrametric structure. We use sampling methods to analyse the error surfaces of feedforward multi-layer perceptron neural networks learning encoder problems. The third order statistics of these points of attraction are examined and found to be arranged in a highly ultrametric way. This is a unique result for a finite, continuous parameter space. The implications of this result are discussed.
Resumo:
Program compilation can be formally defined as a sequence of equivalence-preserving transformations, or refinements, from high-level language programs to assembler code, Recent models also incorporate timing properties, but the resulting formalisms are intimidatingly complex. Here we take advantage of a new, simple model of real-time refinement, based on predicate transformer semantics, to present a straightforward compilation formalism that incorporates real-time constraints. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Recent work by Siegelmann has shown that the computational power of recurrent neural networks matches that of Turing Machines. One important implication is that complex language classes (infinite languages with embedded clauses) can be represented in neural networks. Proofs are based on a fractal encoding of states to simulate the memory and operations of stacks. In the present work, it is shown that similar stack-like dynamics can be learned in recurrent neural networks from simple sequence prediction tasks. Two main types of network solutions are found and described qualitatively as dynamical systems: damped oscillation and entangled spiraling around fixed points. The potential and limitations of each solution type are established in terms of generalization on two different context-free languages. Both solution types constitute novel stack implementations - generally in line with Siegelmann's theoretical work - which supply insights into how embedded structures of languages can be handled in analog hardware.
Resumo:
Over the last decade, software architecture emerged as a critical issue in Software Engineering. This encompassed a shift from traditional programming towards software development based on the deployment and assembly of independent components. The specification of both the overall systems structure and the interaction patterns between their components became a major concern for the working developer. Although a number of formalisms to express behaviour and to supply the indispensable calculational power to reason about designs, are available, the task of deriving architectural designs on top of popular component platforms has remained largely informal. This paper introduces a systematic approach to derive, from CCS behavioural specifications the corresponding architectural skeletons in the Microsoft .Net framework, in the form of executable C and Cω code. The prototyping process is fully supported by a specific tool developed in Haskell
Resumo:
Program slicing is a well known family of techniques used to identify code fragments which depend on or are depended upon specific program entities. They are particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, usually oriented towards the imperative or object paradigms, are based on some sort of graph structure representing program dependencies. Slicing techniques amount, therefore, to (sophisticated) graph transversal algorithms. This paper proposes a completely different approach to the slicing problem for functional programs. Instead of extracting program information to build an underlying dependencies’ structure, we resort to standard program calculation strategies, based on the so-called Bird-Meertens formalism. The slicing criterion is specified either as a projection or a hiding function which, once composed with the original program, leads to the identification of the intended slice. Going through a number of examples, the paper suggests this approach may be an interesting, even if not completely general, alternative to slicing functional programs