899 resultados para Generation of 1898


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The planar 13.56MHz RF-excited low temperature atmospheric pressure plasma jet (APPJ) investigated in this study is operated with helium feed gas and a small molecular oxygen admixture. The effluent leaving the discharge through the jet’s nozzle contains very few charged particles and a high reactive oxygen species’ density. As its main reactive radical, essential for numerous applications, the ground state atomic oxygen density in the APPJ’s effluent is measured spatially resolved with two-photon absorption laser induced fluorescence spectroscopy. The atomic oxygen density at the nozzle reaches a value of ~1016 cm-3. Even at several centimetres distance still 1% of this initial atomic oxygen density can be detected. Optical emission spectroscopy (OES) reveals the presence of short living excited oxygen atoms up to 10 cm distance from the jet’s nozzle. The measured high ground state atomic oxygen density and the unaccounted for presence of excited atomic oxygen require further investigations on a possible energy transfer from the APPJ’s discharge region into the effluent: energetic vacuum ultraviolet radiation, measured by OES down to 110 nm, reaches far into the effluent where it is presumed to be responsible for the generation of atomic oxygen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical generation of ozone by Ni/Sb-SnO2 anodes immersed in 0.5M H2SO4 was assessed in both flow and recycle systems using the same electrochemical cell. The anodes were found to exhibit current efficiencies of up to 50% for ozone generation under flow conditions at room temperature, with an optimum mole ratio in the precursor solutions of ca. 500:8:3 Sn:Sb:Ni and optimum cell voltage of 2.7V. A comparison of the data obtained under flow and recycle conditions suggests that the presence of ozone in the anolyte inhibits its formation. The minimum electrical energy cost achieved, of 18 kWh kg1 compares favorably with estimated costs for Cold Corona Discharge generally reported in the literature, especially when the very significant advantages of electrochemical ozone generation are taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper summarises die main results obtained during the two experimental campaigns on TCE X-ray lasers that we have carried out since the last Kyoto X-ray laser Conference in 1998. A two-color (2 omega /1 omega) pumping configuration was tested and led to the observation of a strong lasing line at 16 nm, identified to a 4f-4d transition in Ni-like Ag. A strong x 300-400 enhancement of the 13.9 nm Ni-like 4d-4p lasing emission was obtained when a traveling wave short pulse pumping was applied. Finally the temporal history of the 13.9 nm laser pulse was measured with a high-resolution Streak camera, A very short 2 ps X-ray laser pulse was directly demonstrated for the first time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an experimentally feasible scheme to generate a superposition of travelling field coherent states using an extremely small Kerr effect and an ancilla which could be a single photon or two entangled twin photons. The scheme contains ingredients which are all within the current state of the art and is robust against the main sources of errors which can be identified in our setups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross-phase-modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, Phys. Rev. A 65, 33 833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schrodinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on nonlinear interaction via double EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:50 beam splitter and two photodetectors. In order to show the entanglement of an entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reverse genetics has facilitated the use of non-segmented negative strand RNA viruses (NNSV) as vectors. Currently, heterologous gene expression necessitates insertion of extra-numeral transcription units (ENTUs), which may alter the NNSV polar transcription gradient and attenuate growth relative to wildtype (Wt). We hypothesized that rescuing recombinant Sendai Virus (rSeV) with a bicistronic gene might circumvent this attenuation but still allow heterologous open reading frame (ORF) expression. Therefore, we used a 9-nucleotide sequence previously described with internal ribosome entry site (IRES) activity, which, when constructed as several repeats, synergistically increased the level of expression of the second cistron [Chappell, S.A., Edelman, G.M., Mauro, V.P., 2000. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc. Natl. Acad. Sci. U.S.A. 97, 1536-1541]. We inserted the Renilla luciferase (rLuc) ORF, preceded by 1, 3 or 7 IRES copies, downstream of the SeV N ORF in an infectious clone. Corresponding rSeVs were successfully rescued. Interestingly, bicistronic rSeVs grew as fast as or faster than Wt rSeV. Furthermore, SeV gene transcription downstream of the N/rLuc gene was either equivalent to, or slightly enhanced, compared to Wt rSeV. Importantly, all rSeV/rLuc viruses efficiently expressed rLuc. IRES repetition increased rLuc expression at a multiplicity of infection of 0.1, although without evidence of synergistic enhancement. In conclusion, our approach provides a novel way of insertion and expression of foreign genes in NNSVs. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incidence of allergy and asthma in developed countries is on the increase and this trend looks likely to continue. CD4(+) T helper 2 (Th2) cells are major drivers of these diseases and their commitment is controlled by cytokines such as interleukin 4, which are in turn regulated by the suppressor of cytokine signaling (SOCS) proteins. We report that SOCS2(-/-) CD4(+) T cells show markedly enhanced Th2 differentiation. SOCS2(-/-) mice, as well as RAG1(-/-) mice transferred with SOCS2(-/-) CD4(+) T cells, exhibit elevated type 2 responses after helminth antigen challenge. Moreover, in in vivo models of atopic dermatitis and allergen-induced airway inflammation, SOCS2(-/-) mice show significantly elevated IgE, eosinophilia, type 2 responses, and inflammatory pathology relative to wild-type mice. Finally, after T cell activation, markedly enhanced STAT6 and STAT5 phosphorylation is observed in SOCS2(-/-) T cells, whereas STAT3 phosphorylation is blunted. Thus, we provide the first evidence that SOCS2 plays an important role in regulating Th2 cell expansion and development of the type 2 allergic responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a physical model for generating multipartite entangled states of spin-s particles that have important applications in distributed quantum information processing. Our protocol is based on a process where mobile spins induce the interaction among remote scattering centers. As such, a major advantage lies in the management of stationary and well-separated spins. Among the generable states, there is a class of N-qubit singlets allowing for optimal quantum telecloning in a scalable and controllable way. We also show how to prepare Aharonov, W, and Greenberger-Horne-Zeilinger states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-dimensional numerical study of the expansion of a dense plasma through a more rarefied one is reported. The electrostatic ion-acoustic shock, which is generated during the expansion, accelerates the electrons of the rarefied plasma inducing a superthermal population which reduces electron thermal anisotropy. The Weibel instability is therefore not triggered and no self-generated magnetic fields are observed, in contrast with published theoretical results dealing with plasma expansion into vacuum. The shock front develops a filamentary structure which is interpreted as the consequence of the electrostatic ion-ion instability, consistently with published analytical models and experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of renewable power sources, distributed generation and the potential for alternative fuelled modes of transport such as electric vehicles has led to concerns over the ability of existing grid systems to facilitate such diverse portfolio mixes in already congested power systems. Internationally the growth in renewable energy sources is driven by government policy targets associated with the uncertainties of fossil fuel supplies, environmental issues and a move towards energy independence. Power grids were traditionally designed as vertically integrated centrally managed entities with fully dispatchable generating plant. Renewable power sources, distributed generation and alternative fuelled vehicles will place these power systems under additional stresses and strains due to their different operational characteristics. Energy storage and smart grid technologies are widely proposed as the tools to integrate these future diverse portfolio mixes within the more conventional power systems. The choice in these technologies is determined not only by their location on the grid system, but by the diversification in the power portfolio mix, the electricity market and the operational demands. This paper presents a high level technical and economic overview of the role and relevance of electrical energy storage and smart grid technologies in the next generation of renewable power systems.