903 resultados para General theory of fields and particles
Resumo:
We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change.
Resumo:
In the first half of this memoir we explore the interrelationships between the abstract theory of limit operators (see e.g. the recent monographs of Rabinovich, Roch and Silbermann (2004) and Lindner (2006)) and the concepts and results of the generalised collectively compact operator theory introduced by Chandler-Wilde and Zhang (2002). We build up to results obtained by applying this generalised collectively compact operator theory to the set of limit operators of an operator (its operator spectrum). In the second half of this memoir we study bounded linear operators on the generalised sequence space , where and is some complex Banach space. We make what seems to be a more complete study than hitherto of the connections between Fredholmness, invertibility, invertibility at infinity, and invertibility or injectivity of the set of limit operators, with some emphasis on the case when the operator is a locally compact perturbation of the identity. Especially, we obtain stronger results than previously known for the subtle limiting cases of and . Our tools in this study are the results from the first half of the memoir and an exploitation of the partial duality between and and its implications for bounded linear operators which are also continuous with respect to the weaker topology (the strict topology) introduced in the first half of the memoir. Results in this second half of the memoir include a new proof that injectivity of all limit operators (the classic Favard condition) implies invertibility for a general class of almost periodic operators, and characterisations of invertibility at infinity and Fredholmness for operators in the so-called Wiener algebra. In two final chapters our results are illustrated by and applied to concrete examples. Firstly, we study the spectra and essential spectra of discrete Schrödinger operators (both self-adjoint and non-self-adjoint), including operators with almost periodic and random potentials. In the final chapter we apply our results to integral operators on .
Resumo:
Based only on the parallel-transport condition, we present a general method to compute Abelian or non-Abelian geometric phases acquired by the basis states of pure or mixed density operators, which also holds for nonadiabatic and noncyclic evolution. Two interesting features of the non-Abelian geometric phase obtained by our method stand out: i) it is a generalization of Wilczek and Zee`s non-Abelian holonomy, in that it describes nonadiabatic evolution where the basis states are parallelly transported between distinct degenerate subspaces, and ii) the non-Abelian character of our geometric phase relies on the transitional evolution of the basis states, even in the nondegenerate case. We apply our formalism to a two-level system evolving nonadiabatically under spontaneous decay to emphasize the non- Abelian nature of the geometric phase induced by the reservoir. We also show, through the generalized invariant theory, that our general approach encompasses previous results in the literature. Copyright (c) EPLA, 2008.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We show that there exists a duality between the local coordinates and the solutions of the Klein-Gerdon equation in curved spacetime in the same sense as in the Minkowski spacetime. However, the duality in curved spacetime does not have the same generality as in flat spacetime and it holds only if the system satisfies certain constraints. We derive these constraints and the basic equations of duality and discuss the implications in the quantum theory. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this paper we review some basic relations of algebraic K theory and we formulate them in the language of D-branes. Then we study the relation between the D8-branes wrapped on an orientable, compact manifold W in a massive Type IIA, supergravity background and the M9-branes wrapped on a compact manifold Z in a massive d = 11 supergravity background from the K-theoretic point of view. By interpreting the D8-brane charges as elements of K-0(C(W)) and the (inequivalent classes of) spaces of gauge fields on the M9-branes as the elements of K-0(C(Z) x ((k) over bar*) G) where G is a one-dimensional compact group, a connection between charges and gauge fields is argued to exists. This connection could be realized as a composition map between the corresponding algebraic K theory groups.
Resumo:
We develop a systematic scheme to treat binary collisions between ultracold atoms in the presence of a strong laser field, tuned to the red of the trapping transition. We assume that the Rabi frequency is much less than the spacing between adjacent bound-state resonances, In this approach we neglect fine and hyperfine structures, but consider fully the three-dimensional aspects of the scattering process, up to the partial d wave. We apply the scheme to calculate the S matrix elements up to the second order in the ratio between the Rabi frequency and the laser detuning, We also obtain, fur this simplified multichannel model, the asymmetric line shapes of photoassociation spectroscopy, and the modification of the scattering length due to the light field at low, but finite, entrance kinetic energy. We emphasize that the present calculations can be generalized to treat more realistic models, and suggest how to carry out a thorough numerical comparison to this semianalytic theory. [S1050-2947(98)04902-6].
Resumo:
The metal-insulator or metal-amorphous semiconductor blocking contact is still not well understood. Here, we discuss the steady state characteristics of a non-intimate metal-insulator Schottky barrier. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We present analytical expressions for the electrical potential, field, thickness of depletion region, capacitance, and charge accumulated in the depletion region. We also discuss ln I versus V(ap) data. Finally, we compare the characteristics in three cases: (i) impurity states at only a single energy level; (ii) uniform energy distribution of impurity states; and (iii) exponential energy distribution of impurity states.In general, the electrical characteristics of Schottky barriers and metal-insulator-metal structures with Schottky barriers depend strongly on the energy distribution of impurity states.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The metal-insulator or metal-amorphous semiconductor blocking contact is still not well understood. Here, the intimate metal-insulator and metal-oxide-insulator contact are discussed. Further, the steady-state characteristics of metal-oxide-insulator-metal structures are also discussed. Oxide is an insulator with wider energy band gap (about 50 Å thick). A uniform energetic distribution of impurities is considered in addition to impurities at a single energy level inside the surface charge region at the oxide-insulator interface. Analytical expressions are presented for electrical potential, field, thickness of the depletion region, capacitance, and charge accumulated in the surface charge region. The electrical characteristics are compared with reference to relative densities of two types of impurities. ln I is proportional to the square root of applied potential if energetically distributed impurities are relatively important. However, distribution of the electrical potential is quite complicated. In general energetically distributed impurities can considerably change the electrical characteristics of these structures.
Resumo:
We perform a detailed analysis of the potentiality of the CERN Large Hadron Collider to study the single production of leptoquarks via pp→e±q→ leptoquark →e± q, with e± generated by the splitting of photons radiated by the protons. Working with the most general SU(2)L⊗U( 1 )Y invariant effective Lagrangian for scalar and vector leptoquarks, we analyze in detail the leptoquark signals and backgrounds that lead to a final state containing an e± and a hard jet with approximately balanced transverse momenta. Our results indicate that the LHC will be able to discover leptoquarks with masses up to 2-3 TeV, depending on their type, for Yukawa couplings of the order of the electromagnetic one.
Generalizing the dynamic field theory of spatial cognition across real and developmental time scales
Resumo:
Within cognitive neuroscience, computational models are designed to provide insights into the organization of behavior while adhering to neural principles. These models should provide sufficient specificity to generate novel predictions while maintaining the generality needed to capture behavior across tasks and/or time scales. This paper presents one such model, the Dynamic Field Theory (DFT) of spatial cognition, showing new simulations that provide a demonstration proof that the theory generalizes across developmental changes in performance in four tasks—the Piagetian A-not-B task, a sandbox version of the A-not-B task, a canonical spatial recall task, and a position discrimination task. Model simulations demonstrate that the DFT can accomplish both specificity—generating novel, testable predictions—and generality—spanning multiple tasks across development with a relatively simple developmental hypothesis. Critically, the DFT achieves generality across tasks and time scales with no modification to its basic structure and with a strong commitment to neural principles. The only change necessary to capture development in the model was an increase in the precision of the tuning of receptive fields as well as an increase in the precision of local excitatory interactions among neurons in the model. These small quantitative changes were sufficient to move the model through a set of quantitative and qualitative behavioral changes that span the age range from 8 months to 6 years and into adulthood. We conclude by considering how the DFT is positioned in the literature, the challenges on the horizon for our framework, and how a dynamic field approach can yield new insights into development from a computational cognitive neuroscience perspective.
Resumo:
Nano(bio)science and nano(bio)technology play a growing and tremendous interest both on academic and industrial aspects. They are undergoing rapid developments on many fronts such as genomics, proteomics, system biology, and medical applications. However, the lack of characterization tools for nano(bio)systems is currently considered as a major limiting factor to the final establishment of nano(bio)technologies. Flow Field-Flow Fractionation (FlFFF) is a separation technique that is definitely emerging in the bioanalytical field, and the number of applications on nano(bio)analytes such as high molar-mass proteins and protein complexes, sub-cellular units, viruses, and functionalized nanoparticles is constantly increasing. This can be ascribed to the intrinsic advantages of FlFFF for the separation of nano(bio)analytes. FlFFF is ideally suited to separate particles over a broad size range (1 nm-1 μm) according to their hydrodynamic radius (rh). The fractionation is carried out in an empty channel by a flow stream of a mobile phase of any composition. For these reasons, fractionation is developed without surface interaction of the analyte with packing or gel media, and there is no stationary phase able to induce mechanical or shear stress on nanosized analytes, which are for these reasons kept in their native state. Characterization of nano(bio)analytes is made possible after fractionation by interfacing the FlFFF system with detection techniques for morphological, optical or mass characterization. For instance, FlFFF coupling with multi-angle light scattering (MALS) detection allows for absolute molecular weight and size determination, and mass spectrometry has made FlFFF enter the field of proteomics. Potentialities of FlFFF couplings with multi-detection systems are discussed in the first section of this dissertation. The second and the third sections are dedicated to new methods that have been developed for the analysis and characterization of different samples of interest in the fields of diagnostics, pharmaceutics, and nanomedicine. The second section focuses on biological samples such as protein complexes and protein aggregates. In particular it focuses on FlFFF methods developed to give new insights into: a) chemical composition and morphological features of blood serum lipoprotein classes, b) time-dependent aggregation pattern of the amyloid protein Aβ1-42, and c) aggregation state of antibody therapeutics in their formulation buffers. The third section is dedicated to the analysis and characterization of structured nanoparticles designed for nanomedicine applications. The discussed results indicate that FlFFF with on-line MALS and fluorescence detection (FD) may become the unparallel methodology for the analysis and characterization of new, structured, fluorescent nanomaterials.
Resumo:
- ZUSAMMENFASSUNG:Die vorliegende Dissertation befasst sich mit der Bestimmung der chemischen und physikalischen Eigenschaften von Aerosolpartikeln im Amazonasbecken, die während Zeiten mit Biomasseverbrennung und bei Hintergrundbedingungen bestimmt wurden. Die Messungen wurden während zwei Kampagnen im Rahmen des europäischen Beitrags zum LBA-EUSTACH Experiment in Amazonien. Die Daten umfassen Messungen der Anzahlkonzentrationen, Größenverteilungen, optischen Eigenschaften sowie Elementzusammensetzungen und Kohlenstoffgehalte der gesammelten Aerosole. Die Zusammensetzung des Aerosols wies auf folgende drei Quellen hin: natürlichen biogenen, Mineralstaub, und pyrogenes Aerosol. Aller drei Komponenten trugen signifikant zur Extinktion des Sonnenlichts bei. Insgesamt ergab sich eine Steigerung der Meßwerte um ca. das Zehnfache während der Trockenzeit im Vergleich zur Regenzeit, was auf eine massive Einbringung von Rauchpartikeln im Submikrometerbereich in die Atmosphäre während der Trockenzeit zurückzuführen ist. Dementsprechend sank die Einzelstreualbedo von ca. 0,97 auf 0,91. Der Brechungsindex der Aerosolpartikel wurde mit einer neuen iterative Methoden, basierend auf der Mie-Theorie berechnet. Es ergaben sich durchschnittliche Werte von 1,42 0,006i für die Regenzeit und 1,41 0,013i für die Trockenperiode. Weitere klimatisch relevante Parameterergaben für Hintergrundaerosole und für Aerosole aus Biomasseverbrennung folgende Werte: Asymmetrieparameter von 0,63 ± 0,02 bzw. 0,70 ± 0,03 und Rückstreuungsverhältnisse von 0,12 ± 0,01 bzw. 0,08 ± 0,01. Diese Veränderungen haben das Potential, das regionale und globale Klima über die Variierung der Extinktion der Sonneneinstrahlung als auch der Wolkeneigenschaften zu beeinflussen.