927 resultados para Gene Flow


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dispersal, i.e. individual movement between breeding sites, is a key process for metapopulation dynamics and gene flow. Its success can be modulated by phenotypic differences between dispersing and philopatric individuals, or dispersal syndromes. However, the environmental (external) and physiological (internal) constraints underlying such syndromes remain poorly known. This project aimed at clarifying the impact of environmental variation and oxidative constraints, linked to the reactive oxygen species produced during respiration, on phenotypes associated to dispersal in a passerine bird, the collared flycatcher Ficedula albicollis. Energetic demand was experimentally (i) increased through a wing load manipulation or (ii) relieved through food supplementation. The oxidative balance of breeding flycatchers was influenced by complex interactions of dispersal status and extrinsic factors (breeding density, year, experimental treatments). Interestingly, antioxidant capacity was influenced both by permanent individual differences and by food availability, whereas measures of pro-oxidants were highly variables within individuals. Environmental variation and energetic constraints also modulated the differences in reproduction associated with dispersal: dispersing and philopatric birds differ in their management of the oxidative balance when it is competing with reproductive investment. This thesis highlights that reaction norms, rather than fixed differences, often shape traits associated to dispersal. ----- Le déplacement d'un individu entre sites de reproduction, ou dispersion, est un processus clé pour la dynamique des métapopulations et les flux de gènes. Son succès peut être modulé par des différences de phénotype, ou syndromes de dispersion. Cependant, les contraintes environnementales et physiologiques qui sous-tendent ces syndromes restent mal connues. Ce projet vise à clarifier l'impact des variations environnementales et des contraintes oxydatives (liées aux espèces réactives de l'oxygène produites durant la respiration) sur les phénotypes associés à la dispersion chez un passereau, le gobemouche à collier Ficedula albicollis. La demande énergétique a été expérimentalement (i) augmentée en manipulant la surface alaire ou (ii) diminuée par une supplémentation en nourriture. L'équilibre oxydo-réducteur des gobemouches en reproduction est influencé par des interactions complexes entre statut de dispersion et facteurs extrinsèques (densité de couples reproducteurs, année, traitement expérimental). La capacité antioxydante dépend principalement de différences permanentes entre individus, alors que les pro-oxydants présentent de grandes variations intra-individu. Environnement et contraintes énergétiques modulent aussi les différences de reproduction liées à la dispersion : les oiseaux dispersants et philopatriques diffèrent dans leur gestion de l'équilibre oxydo-réducteur lorsqu'il est en compétition avec l'investissement reproducteur. Ce travail souligne que les traits associés à la dispersion sont souvent déterminés par des normes de réaction à l'environnement et non des différences fixées entre individus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing evidence suggests oceanic traits may play a key role in the genetic structuring of marine organisms. Whereas genetic breaks in the open ocean are well known in fishes and marine invertebrates, the importance of marine habitat characteristics in seabirds remains less certain. We investigated the role of oceanic transitions versus population genetic processes in driving population differentiation in a highly vagile seabird, the Cory"s shearwater, combining molecular, morphological and ecological data from 27 breeding colonies distributed across the Mediterranean (Calonectris diomedea diomedea) and the Atlantic (C. d. borealis). Genetic and biometric analyses showed a clear differentiation between Atlantic and Mediterranean Cory"s shearwaters. Ringing-recovery data indicated high site fidelity of the species, but we found some cases of dispersal among neighbouring breeding sites (<300 km) and a few long distance movements (>1000 km) within and between each basin. In agreement with this, comparison of phenotypic and genetic data revealed both current and historical dispersal events. Within each region, we did not detect any genetic substructure among archipelagos in the Atlantic, but we found a slight genetic differentiation between western and eastern breeding colonies in the Mediterranean. Accordingly, gene flow estimates suggested substantial dispersal among colonies within basins. Overall, genetic structure of the Cory"s shearwater matches main oceanographic breaks (Almería-Oran Oceanic Front and Siculo-Tunisian Strait), but spatial analyses suggest that patterns of genetic differentiation are better explained by geographic rather than oceanographic distances. In line with previous studies, genetic, phenotypic and ecological evidence supported the separation of Atlantic and Mediterranean forms, suggesting the 2 taxa should be regarded as different species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The integration of ecological and evolutionary data is highly valuable for conservation planning. However, it has been rarely used in the marine realm, where the adequate design of marine protected areas (MPAs) is urgently needed. Here, we examined the interacting processes underlying the patterns of genetic structure and demographic strucuture of a highly vulnerable Mediterranean habitat-forming species (i.e. Paramuricea clavata (Risso, 1826)), with particular emphasis on the processes of contemporary dispersal, genetic drift, and colonization of a new population. Isolation by distance and genetic discontinuities were found, and three genetic clusters were detected; each submitted to variations in the relative impact of drift and gene flow. No founder effect was found in the new population. The interplay of ecology and evolution revealed that drift is strongly impacting the smallest, most isolated populations, where partial mortality of individuals was highest. Moreover, the eco-evolutionary analyses entailed important conservation implications for P. clavata. Our study supports the inclusion of habitat-forming organisms in the design of MPAs and highlights the need to account for genetic drift in the development of MPAs. Moreover, it reinforces the importance of integrating genetic and demographic data in marine conservation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic diversity is one of the levels of biodiversity that the World Conservation Union (IUCN) has recognized as being important to preserve. This is because genetic diversity is fundamental to the future evolution and to the adaptive flexibility of a species to respond to the inherently dynamic nature of the natural world. Therefore, the key to maintaining biodiversity and healthy ecosystems is to identify, monitor and maintain locally-adapted populations, along with their unique gene pools, upon which future adaptation depends. Thus, conservation genetics deals with the genetic factors that affect extinction risk and the genetic management regimes required to minimize the risk. The conservation of exploited species, such as salmonid fishes, is particularly challenging due to the conflicts between different interest groups. In this thesis, I conduct a series of conservation genetic studies on primarily Finnish populations of two salmonid fish species (European grayling, Thymallus thymallus, and lake-run brown trout, Salmo trutta) which are popular recreational game fishes in Finland. The general aim of these studies was to apply and develop population genetic approaches to assist conservation and sustainable harvest of these populations. The approaches applied included: i) the characterization of population genetic structure at national and local scales; ii) the identification of management units and the prioritization of populations for conservation based on evolutionary forces shaping indigenous gene pools; iii) the detection of population declines and the testing of the assumptions underlying these tests; and iv) the evaluation of the contribution of natural populations to a mixed stock fishery. Based on microsatellite analyses, clear genetic structuring of exploited Finnish grayling and brown trout populations was detected at both national and local scales. Finnish grayling were clustered into three genetically distinct groups, corresponding to northern, Baltic and south-eastern geographic areas of Finland. The genetic differentiation among and within population groups of grayling ranged from moderate to high levels. Such strong genetic structuring combined with low genetic diversity strongly indicates that genetic drift plays a major role in the evolution of grayling populations. Further analyses of European grayling covering the majority of the species’ distribution range indicated a strong global footprint of population decline. Using a coalescent approach the beginning of population reduction was dated back to 1 000-10 000 years ago (ca. 200-2 000 generations). Forward simulations demonstrated that the bottleneck footprints measured using the M ratio can persist within small populations much longer than previously anticipated in the face of low levels of gene flow. In contrast to the M ratio, two alternative methods for genetic bottleneck detection identified recent bottlenecks in six grayling populations that warrant future monitoring. Consistent with the predominant role of random genetic drift, the effective population size (Ne) estimates of all grayling populations were very low with the majority of Ne estimates below 50. Taken together, highly structured local populations, limited gene flow and the small Ne of grayling populations indicates that grayling populations are vulnerable to overexploitation and, hence, monitoring and careful management using the precautionary principles is required not only in Finland but throughout Europe. Population genetic analyses of lake-run brown trout populations in the Inari basin (northernmost Finland) revealed hierarchical population structure where individual populations were clustered into three population groups largely corresponding to different geographic regions of the basin. Similar to my earlier work with European grayling, the genetic differentiation among and within population groups of lake-run brown trout was relatively high. Such strong differentiation indicated that the power to determine the relative contribution of populations in mixed fisheries should be relatively high. Consistent with these expectations, high accuracy and precision in mixed stock analysis (MSA) simulations were observed. Application of MSA to indigenous fish caught in the Inari basin identified altogether twelve populations that contributed significantly to mixed stock fisheries with the Ivalojoki river system being the major contributor (70%) to the total catch. When the contribution of wild trout populations to the fisheries was evaluated regionally, geographically nearby populations were the main contributors to the local catches. MSA also revealed a clear separation between the lower and upper reaches of Ivalojoki river system – in contrast to lower reaches of the Ivalojoki river that contributed considerably to the catch, populations from the upper reaches of the Ivalojoki river system (>140 km from the river mouth) did not contribute significantly to the fishery. This could be related to the available habitat size but also associated with a resident type life history and increased cost of migration. The studies in my thesis highlight the importance of dense sampling and wide population coverage at the scale being studied and also demonstrate the importance of critical evaluation of the underlying assumptions of the population genetic models and methods used. These results have important implications for conservation and sustainable fisheries management of Finnish populations of European grayling and brown trout in the Inari basin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The loss of large areas of Cerrado (Brazilian savanna) in Brazil can lead to reduced biodiversity and to the extinction of species. Therefore, the present study aimed to investigate the genetic fragility of populations of Copaifera langsdorffii Desf exposed to different anthropic conditions in fragments of Cerrado in the state of São Paulo. The study was carried out in two Experimental Stations operated by the Forest Institute (Assis and Itirapina), in one fully protected conservation unit (Pedregulho) and in one private property (Brotas). Analyses were conducted using leaf samples from 353 adult specimens and eight pairs of microsatellite loci. The number of alleles per locus ranged from 13 to 15 in all populations, but the mean number of effective alleles was approximately half this value (7.2 to 9-1). Observed heterozygosity was significant and lower than the expected in all populations. Consequently, all populations deviated from Hardy-Weinberg expected frequencies. Fixation indexes were significant for all populations, with the Pedregulho population having the lowest value (0.189) and Itirapina having the highest (0.283). The analysis of spatial genetic structure detected family structures at distance classes of 20 to 65 m in the populations studied. No clones were detected in the populations. Estimates of effective population size were low, but the area occupied by each population studied was large enough for conservation, medium and long term. Recent reductions or bottlenecks were detected in all four populations. Mean Gst’ (genetic divergence) indicated that most of the variation was within populations. Cluster structure analysis based on the genotypes detected K= 4 clusters with distinct allele frequencies patterns. The genetic differentiation observed among populations is consistent with the hypothesis of genetic and geographic isolation. Therefore, it is essential to adopt conservation strategies that raise the gene flow between fragments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The variability in the chronology of the vegetative and reproductive development of weedy rice complex has been little studied. However, a field trial was established to study the timing of growth stages of sixteen weedy rice morphotypes and five rice varieties of Costa Rica. Weedy rice presented a wide range of variation for all descriptors among and within morphotypes. Weedy rice was taller than the rice varieties during vegetative phase and showed a growth increase of 14-23 cm every two weeks. Six morphotypes emerged earlier than commercial rice varieties, but no differences where found between samples for the time required for starting tillering. Early emergence of weedy rice morphotypes was not associated with early flowering, thus no correlation was detected between the vegetative and reproductive phases. All weedy rice morphotypes reached anthesis and maturity earlier than the rice varieties. Nevertheless, varieties Setesa-9 and CR-5272 overlapped anthesis with eleven morphotypes and variety CR-4338 overlapped flowering with eight weedy rice morphotypes. In contrast, none of the morphotypes overlapped anthesis with varieties CR-1821 and CR-1113. The results obtained showed the competitive capacity of weedy rice and provided valuable information about flowering overlap between weedy rice morphotypes and rice varieties which will be useful in the design of gene flow studies among them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Weeds in pastures can intoxicate animals, and Arrabidaea bilabiata is the most important species for herbivores in floodplain areas in the Amazon Basin. Genetic diversity studies in natural populations may contribute to the better understanding of the range of toxicity and the genetic variability organization in this species. The objective of this study was to assess the variability and genetic structure in six populations of A. bilabiata sampled in floodplain areas in three municipalities of the Amazonas State, from the AFLP markers analysis. AFLP markers were efficient to characterize the genetic variability of the 65 individuals analyzed. From four combinations of oligonucleotides, a total of 309 AFLP fragments was obtained, where 304 (98.38%) were polymorphic. By the dendrogram and Bayesian cluster analysis, there was a formation of two isolated groups, the first one comprising individuals from Autazes municipality and the second one comprising individuals from Itacoatiara and Parintins. However, depending on the method to define the most probable cluster number, there was a separation of the six populations, according to their geographical origin. Mantel test confirmed that geographically closer populations are more akin, although low gene flow (0.538) is observed among the sampled populations. The molecular analysis of variance found that 49.29% of the genetic variability are among individuals inside populations and 50.71% among the populations analyzed. The results indicate the possibility that isolated A. bilabiata populations contain plants with different toxicity levels and suggest a strong adaptability of the species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Através da análise de 18 locos isoenzimáticos polimórficos, foram estimadas as freqüências alélicas referentes a 214 indivíduos adultos de quatro populações naturais de Cryptocarya moschata de duas regiões do estado de São Paulo. Com base nas heterozigosidades observadas e esperadas, foram obtidas estimativas das estatísticas F de Wright. Para fins de comparação, utilizou-se também o método da análise da variância para estimação dos parâmetros correspondentes F = FIT, qP= FST e f = FIS. Os dois métodos forneceram resultados bastante concordantes: f.gif (76 bytes)IT = 0,142; f.gif (76 bytes)ST = 0,140; f.gif (76 bytes)IS = 0,002 e f.gif (76 bytes)= 0,116; a3form05.gif (151 bytes)P = 0,123 e a3form06.gif (144 bytes)= ­0,008, indicando que os indivíduos dentro das populações devem ser panmíticos e que a diversidade entre populações é bastante alta, sendo similar à que se espera para famílias com estruturação de meios-irmãos. Calculando a3form05.gif (151 bytes)P com as populações tomadas duas a duas, notou-se tendência de a3form05.gif (151 bytes)P crescer com a distância geográfica o que sugere tendência de isolamento pela distância. O fluxo gênico foi estimado em 0,9 indivíduos por geração, o que corrobora a pronunciada diferenciação populacional encontrada. Devido ao valor negligível encontrado de a3form07.gif (245 bytes)IS, o tamanho efetivo de variância de cada população é equivalente ao número de indivíduos amostrados. As estratégias de manejo e conservação necessárias para a preservação da alta variabilidade genética intrapopulacional de C. moschata implicam na manutenção de populações com número grande de indivíduos. Além disso, para a preservação da espécie como um todo, a manutenção de muitas populações provavelmente é necessária.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dahlstedtia has been considered a monotypic genus by some authors, but comprising two species according to others. The latter view was supported by our biosystematic study. The two species are Neotropical, mainly occurring in the Brazilian Atlantic Forest, where they are, however, allopatric. Experimental pollinations show that the two species are intersterile. After interspecificcrossings, few pollen tubes reach the ovule, a dense secretion fills the micropyle and no proembryos are formed. Probably, there is no gene flow between species, but if it should occur, no hybrids would be formed. The present work confirms Burkart's taxonomic view, according to which Dahlstedtia comprises at least two species: D. pinnata and D. pentaphylla.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genetic variability of the "curimba", Prochilodus lineatus, from three locations in the Paraná river basin, was investigated by starch gel electrophoresis. A total of 160 specimens were analyzed for 19 enzymes, 12 of which permitted successful interpretation of electrophoretic patterns. Eighteen loci were identified and six of them proved to be polymorphic (EST-1*, EST-2*, IDH-1*, PGM-1*, PGM-2*, LDH-2*). Mean heterozygosity was considered high (13%) by comparison with the literature. A low level of differentiation was found among subpopulations, with mean F ST = 0.018. Values of genetic distance and genetic identity suggest that, at least along this stretch of the river, P. lineatus comprises a single breed with high gene flow. This analysis has important implications for fishery management, aquaculture, and conservation of the stocks

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A sample of 103 randomly chosen healthy individuals from Alegrete, RS, Brazil, was tested for the CCR5delta32 allele, which is known to influence susceptibility to HIV-1 infection. The CCR5delta32 allele was identified by PCR amplification using specific primers flanking the region of deletion, followed by electrophoresis on a 3% agarose gel. The data obtained were compared to those reported for other populations and interpreted in terms of Brazilian history. The individuals studied came from a highly admixed population. Most of them were identified as white (N = 59), while blacks and browns (mulattoes) were N = 13 and N = 31, respectively. The observed frequencies, considering the white, black and brown samples (6.8, 3.8, and 6.4%, respectively), suggest an important European parental contribution, even in populations identified as black and brown. However, in Brazil as a whole, this allele shows gradients indicating a relatively good correlation with the classification based on skin color and other physical traits, used here to define major Brazilian population groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reciprocal selection between interacting species is a major driver of biodiversity at both the genetic and the species level. This reciprocal selection, or coevolution, has led to the diversification of two highly diverse and abundant groups of organisms, flowering plants and their insect herbivores. In heterogeneous environments, the outcome of coevolved species interactions is influenced by the surrounding community and/or the abiotic environment. The process of adaptation allows species to adapt to their local conditions and to local populations of interacting species. However, adaptation can be disrupted or slowed down by an absence of genetic variation or by increased inbreeding, together with the following inbreeding depression, both of which are common in small and isolated populations that occur in fragmented environments. I studied the interaction between a long-lived plant Vincetoxicum hirundinaria and its specialist herbivore Abrostola asclepiadis in the southwestern archipelago of Finland. I focused on mutual local adaptation of plants and herbivores, which is a demonstration of reciprocal selection between species, a prerequisite for coevolution. I then proceeded to investigate the processes that could potentially hamper local adaptation, or species interaction in general, when the population size is small. I did this by examining how inbreeding of both plants and herbivores affects traits that are important for interaction, as well as among-population variation in the effects of inbreeding. In addition to bi-parental inbreeding, in plants inbreeding can arise from self-fertilization which has important implications for mating system evolution. I found that local adaptation of the plant to its herbivores varied among populations. Local adaptation of the herbivore varied among populations and years, being weaker in populations that were most connected. Inbreeding caused inbreeding depression in both plants and herbivores. In some populations inbreeding depression in herbivore biomass was stronger in herbivores feeding on inbred plants than in those feeding on outbred ones. For plants it was the other way around: inbreeding depression in anti-herbivore resistance decreased when the herbivores were inbred. Underlying some of the among-population variation in the effects of inbreeding is variation in plant phenolic compounds. However, variation in the modification of phenolic compounds in the digestive tract of the herbivore did not explain the inbreeding depression in herbivore biomass. Finally, adult herbivores had a preference for outbred host plants for egg deposition, and herbivore inbreeding had a positive effect on egg survival when the eggs were exposed to predators and parasitoids. These results suggest that plants and herbivores indeed exert reciprocal selection, as demonstrated by the significant local adaptation of V. hirundinaria and A. asclepiadis to one another. The most significant cause of disruption of the local adaptation of herbivore populations was population connectivity, and thus probably gene flow. In plants local adaptation tended to increase with increasing genetic variation. Whether or not inbreeding depression occurred varied according to the life-history stage of the herbivore and/or the plant trait in question. In addition, the effects of inbreeding strongly depended on the population. Taken together, inbreeding modified plant-herbivore interactions at several different levels, and can thus affect the strength of reciprocal selection between species. Thus inbreeding has the potential to affect the outcome of coevolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blood serum and egg-white protein samples from individuals representing seven colonies of Larusargentatus, and four colonies of Sterna hirundo were electrophoretically analysed to determine levels of genetic variability and to assess the utility of polymorphic loci as genetic markers. Variability occurred at five co-dominant autosomal loci. S. hirundo protein polymorphism occurred at the Est-5 and the Oest-l loci, while nineteen loci were monomorphic. L. argentatus samples were monomorphic at seventeen loci and polymorphic at the Ldh-A and the Alb loci. Intergeneric differences existed at the Oalb and the Ldh-A loci. Although LDH-A100 from both species possessed identical electrophoretLc mobilities, the intergeneric differences were expressed as a difference in enzyme the'ITIlostabilities. Geographical distribution of alleles and genetic divergence estimates suggest ~ hirundo population panmixis,at least at the sampled locations. The h argentatus gene pool appears relatively heterogeneous with a discreet Atlantic Coast population and a Great Lakes demic population. These observed population structures may be maintained by the relative amount of gene flow occurring within and among populations. Mass ringing data coupled to reproductive success information and analysis of dispersal trends appear to validate this assumption. Similar results may be generated by either selection or both small organism and low locus sample sizes. To clarify these results and to detect the major factor(s) affecting the surveyed portions of the genome, larger sample sizes in conjunction with precise eco-demographic data are required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette étude vise à comparer l’histoire évolutive des parasitoïdes du genre Horismenus (Hymenoptera: Eulophidae) à celle de leurs hôtes bruches (Coleoptera: Bruchidae) et plante hôte (Phaseolus vulgaris L.) cultivée dans le contexte d’agriculture traditionnelle, au sein de son centre de domestication Mésoaméricain. Nous avons analysé la structure génétique de 23 populations de quatre espèces de parasitoïdes au Mexique, en utilisant un fragment du gène mitochondrial COI afin de les comparer aux structures précédemment publiées des hôtes bruches et du haricot commun. Nous avons prédit que les structures génétiques des populations d’hôtes (bruches et plante) et de parasitoïdes seraient similaires puisque également influencées par la migration entremise par l’humain (HMM) étant donnée que les parasitoïdes se développent telles que les bruches à l’intérieur des haricots. Compte tenu des stratégies de manipulation reproductive utilisées par l’alpha-protéobactérie endosymbionte Wolbachia spp. pour assurer sa transmission, la structure génétique des populations de parasitoïdes inférée à partir du génome mitochondrial devrait être altérée conséquemment à la transmission conjointe des mitochondries et des bactéries lors de la propagation de l’infection dans les populations de parasitoïdes. Les populations du parasitoïde H. missouriensis sont infectées par Wolbachia spp. Tel que prédit, ces populations ne sont pas différenciées (FST = 0,06), ce qui nous empêche d’inférer sur une histoire évolutive parallèle. Contrairement aux bruches, Acanthoscelides obtectus et A. ovelatus, la HMM n'est pas un processus contemporain qui influence la structure génétique des populations du parasitoïde H. depressus, étant donné la forte différenciation (FST = 0,34) qui existe entre ses populations. La structure génétique observée chez H. depressus est similaire à celle de sa plante hôte (i.e. dispersion aléatoire historique à partir d'un pool génique ancestral très diversifié) et est probablement le résultat d’un flux génique important en provenance des populations de parasitoïdes associées aux haricots spontanées à proximité des champs cultivés. L’étude de l’histoire évolutive intégrant plusieurs niveaux trophiques s’est avérée fructueuse dans la détection des différentes réponses évolutives entre les membres du module trophique face aux interactions humaines et parasitaires, et montre la pertinence d’analyser les systèmes écologiques dans leur ensemble.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La diversification des signaux aposématiques dans un cadre de mimétisme müllérien est un phénomène intrigant. Alors que la théorie relative à l'aposématisme et au mimétisme suggère l'évolution vers un signal aposématique unique, d'impressionnantes variations peuvent être observées entre les populations, et cela à petite échelle spatiale. Il a été supposé que la variation spatiale des pressions de sélection engendrées par différents prédateurs puisse être à l'origine de ce phénomène. Afin de tester cette hypothèse, nous avons étudié la transition entre deux systèmes géographiques caractérisés par des patrons aposématiques distincts chez des grenouilles mimétiques et toxiques du nord du Pérou (Dendrobatidae) en combinant les outils de génétique des populations aux outils écologiques. Dans chacun de ces systèmes, Ranitomeya imitator vit en sympatrie avec R. ventrimaculata ou R. variabilis. Il s'agit du principal exemple empirique suggérant que dans un cadre de mimétisme müllérien, il n'y a pas convergence des signaux aposématiques des deux espèces, mais plutôt convergence unidirectionnelle où R. imitator, étant polymorphe, imite des espèces monomorphes avec lesquelles elle est sympatrique. Premièrement, les résultats réfutent les prémisses qui suggèrent que R. imitator converge vers le signal aposématique d’une autre espèce. La haute similarité génétique entre les espèces modèles suggère qu'elles ont divergé plus récemment que les populations de R. imitator ou qu'elles sont encore connectées par du flux génique. Ces résultats indiquent que ces espèces ont été identifiées à tort comme des espèces différentes. De fait, l'identification de l'espèce imitatrice basée sur la variabilité phénotypique est invalidée dans ce système puisque R. imitator et R. variabilis/ventrimaculata démontrent la même variabilité. Deuxièmement, nos résultats démontrent que la prédation varie spatialement, autant en intensité qu'en direction, créant ainsi un paysage hétérogène de pressions de sélection. Ainsi, de fortes pressions de prédation stabilisatrice permettent le maintien de l'organisation géographique de différents signaux aposématiques et expliquent l'uniformité de ces signaux ainsi que les relations mimétiques. Par contre, le relâchement temporaire des pressions de prédation permet l'apparition de nouveaux phénotypes aposématiques via les processus évolutifs neutres, conduisant à un haut polymorphisme au niveau de ces populations. L'interaction de ces modes sélectifs nous a permis de démontrer pour la première fois comment la théorie évolutive de Wright (shifting balance theory) permet la diversification adaptative dans un système naturel. Pour conclure, cette étude a permis de mettre en évidence à quel point les systèmes de mimétisme müllérien peuvent être dynamiques. L'alternance spatiale entre les processus évolutifs neutres et la sélection naturelle permet l'émergence de nouveaux phénotypes aposématiques à une échelle locale, ainsi que l'apparition d'une organisation géographique des signaux d'avertissement et des relations de mimétisme müllérien.