967 resultados para Gas-phase Acidities
Resumo:
In this work the most abundant trehalose conformers for the isolated molecule as well as for the water solvated system are selected. The theoretical tecniques employed are ab initio calculations in the gas phase and in aqueous solution using the PCM model. A conformational map is built for the glycosidic angles (phi and psi) and the search for the most abundant structures is explained. The final structures are validated by the agreement found between experimental and theoretical values for ³J H,C along the glycosidic linkage.
Resumo:
The field of application of mass spectrometry (MS) has increased considerably due to the development of ionization techniques. Other factors that have stimulated the use of MS are the tandem mass spectrometry (MS/MS) and sequential mass spectrometry (MSn) techniques. However, the interpretation of the MS/MS and MSn data may lead to speculative conclusions. Thus, various quantum chemical methods have been applied for obtaining high quality thermochemical data in gas phase. In this review, we show some applications of computational quantum chemistry to understand the formation and fragmentation of gaseous ions of organic compounds in a MS analysis.
Resumo:
An absolute method is described via mass spectrometry (MS) for the structural assignment of isomers within the class of methylpiperidines. The method explores both the unimolecular and bimolecular gas phase behavior of structurally diagnostic fragment ions (SDFI). For the methylpiperidnes, the isomeric 2-methyl, 3-methyl and 4-methyl 2-azabutadienyl cations are found to function as SDFI. These fragment ions are expected to be formed from all members within the class, to be stable and to retain the structural information of the precursor molecule, and to not interconvert into one another. To characterize these SDFI, both the collision induced dissociation (CID) in argon and bimolecular ion/molecule chemistry with ethyl vinyl ether were compared.
Resumo:
Friedelin molecular conformers were obtained by Density Functional Theory (DFT) and by ab initio structure determination from powder X-ray diffraction. Their conformers with the five rings in chair-chair-chair-boat-boat, and with all rings in chair, are energy degenerated in gas-phase according to DFT results. The powder diffraction data reveals that rings A, B and C of friedelin are in chair, and rings D and E in boat-boat, conformation. The high correlation values among powder diffraction data, DFT and reported single-crystal data indicate that the use of conventional X-ray diffractometer can be applied in routine laboratory analysis in the absence of a single-crystal diffractometer.
Resumo:
Enzymatic conversion of gaseous substrates into products in aquo-restricted media, using enzymes or whole cells (free and immobilized) as biocatalysts, constitutes a promising technology for the development of clearer processes. Solid-gas systems offer high production rates for minimal plant sizes, allow important reduction of treated volumes, and permit simplified downstream processes. In this review article, principles and applications of solid-gas biocatalysis are discussed. Comparisons of its advantages and disadvantages with those of the organic- and aqueous-phase reactions are also presented herein.
Resumo:
A new method using the headspace solid phase microextraction (HS-SPME) technique was used to evaluate the infinite dilute activity coefficient (γ1∞) in an alcohol/water/salt system. The studied systems were ethanol and water with NaCl and NH4Cl at salt concentrations of 5, 10, 15, and 30% m/v and temperatures of 303.15 and 313.15 K. The method was used to investigate the salt effect on vapor/liquid equilibrium in an ethanol/water system, yielding satisfactory results. The study focused on the rich side in ethanol. The data were compared with the literature infinite dilution data determined by other methods such as differential ebulliometry (EBUL), differential static cell equilibrium (STAT), and gas-liquid chromatography with no gas phase correction (GC). In this study, NaCl showed better separation rates than NH4Cl.
Resumo:
In this thesis three experiments with atomic hydrogen (H) at low temperatures T<1 K are presented. Experiments were carried out with two- (2D) and three-dimensional (3D) H gas, and with H atoms trapped in solid H2 matrix. The main focus of this work is on interatomic interactions, which have certain specific features in these three systems considered. A common feature is the very high density of atomic hydrogen, the systems are close to quantum degeneracy. Short range interactions in collisions between atoms are important in gaseous H. The system of H in H2 differ dramatically because atoms remain fixed in the H2 lattice and properties are governed by long-range interactions with the solid matrix and with H atoms. The main tools in our studies were the methods of magnetic resonance, with electron spin resonance (ESR) at 128 GHz being used as the principal detection method. For the first time in experiments with H in high magnetic fields and at low temperatures we combined ESR and NMR to perform electron-nuclear double resonance (ENDOR) as well as coherent two-photon spectroscopy. This allowed to distinguish between different types of interactions in the magnetic resonance spectra. Experiments with 2D H gas utilized the thermal compression method in homogeneous magnetic field, developed in our laboratory. In this work methods were developed for direct studies of 3D H at high density, and for creating high density samples of H in H2. We measured magnetic resonance line shifts due to collisions in the 2D and 3D H gases. First we observed that the cold collision shift in 2D H gas composed of atoms in a single hyperfine state is much smaller than predicted by the mean-field theory. This motivated us to carry out similar experiments with 3D H. In 3D H the cold collision shift was found to be an order of magnitude smaller for atoms in a single hyperfine state than that for a mixture of atoms in two different hyperfine states. The collisional shifts were found to be in fair agreement with the theory, which takes into account symmetrization of the wave functions of the colliding atoms. The origin of the small shift in the 2D H composed of single hyperfine state atoms is not yet understood. The measurement of the shift in 3D H provides experimental determination for the difference of the scattering lengths of ground state atoms. The experiment with H atoms captured in H2 matrix at temperatures below 1 K originated from our work with H gas. We found out that samples of H in H2 were formed during recombination of gas phase H, enabling sample preparation at temperatures below 0.5 K. Alternatively, we created the samples by electron impact dissociation of H2 molecules in situ in the solid. By the latter method we reached highest densities of H atoms reported so far, 3.5(5)x1019 cm-3. The H atoms were found to be stable for weeks at temperatures below 0.5 K. The observation of dipolar interaction effects provides a verification for the density measurement. Our results point to two different sites for H atoms in H2 lattice. The steady-state nuclear polarizations of the atoms were found to be non-thermal. The possibility for further increase of the impurity H density is considered. At higher densities and lower temperatures it might be possible to observe phenomena related to quantum degeneracy in solid.
Resumo:
The development of new technologies to supplement fossil resources has led to a growing interest in the utilization of alternative routes. Biomass is a rich renewable feedstock for producing fine chemicals, polymers, and a variety of commodities replacing petroleumderived chemicals. Transformation of biomass into diverse valuable chemicals is the key concept of a biorefinery. Catalytic conversion of biomass, which reduces the use of toxic chemicals is one of the important approaches to improve the profitability of biorefineries. Utilization of gold catalysts allows conducting reactions under environmentally-friendly conditions, with a high catalytic activity and selectivity. Gold-catalyzed valorization of several biomass-derived compounds as an alternative approach to the existing technologies was studied in this work. Isomerization of linoleic acid via double bond migration towards biologically active conjugated linoleic acid isomers (CLA) was investigated. The activity and selectivity of various gold catalysts towards cis-9,trans-11-CLA and trans-10,cis-12-CLA were investigated in a semi-batch reactor, showing that the yield of the desired products varied, depending on the catalyst support. The structure sensitivity in the selective oxidation of arabinose was demonstrated using a series of gold catalysts with different Au cluster sizes in a shaker reactor operating in a semibatch mode. The gas-phase selective oxidation of ethanol was studied and the influence of the catalyst support on the catalytic performance was investigated. The selective oxidation of the lignan hydroxymatairesinol (HMR), extracted from the Norway spruce (Picea abies) knots, to the lignan oxomatairesinol (oxoMAT) was extensively investigated. The influence of the reaction conditions and catalyst properties on the yield of oxoMAT was evaluated. In particular, the structure sensitivity of the reaction was demonstrated. The catalyst deactivation and regeneration procedures were studied. The reaction kinetics and mechanism were advanced.
Resumo:
Kandidaatintyön johdantokappaleessa esitellään vetyperoksidi ja mihin sitä käytetään teollisuudessa. Työssä vertaillaan antrakinoniprosessia ja suoraa prosessia sekä selvitetään nykyisin enemmän vetyperoksidituotantoon käytetyn antrakinoniprosessin ongelmakohdat ja osoitetaan, miksi suora synteesi vetyperoksidin tuotannossa olisi parempi vaihtoehto. Kandidaatintyön käsittelee suurilta osin turvallisuusongelmia, joita esiintyy suoran synteesin yhteydessä. Kirjallisuudesta on etsitty ratkaisuja näihin ongelmiin, kuten membraaniprosessin käyttöä räjähdysvaaran välttämiseksi. Pienemmän reaktorin eli ns. mikroreaktorin käyttö tuo mukanaan monia etuja vetyperoksidin tuotantoon. Tällöin prosessi on turvallisempi ja sitä on helpompi hallita. Mikroreaktorissa voidaan käyttää korkeampia lämpötiloja ja paineita kuin makroreaktorilla ilman, että räjähdysvaara prosessissa kasvaisi. Mikroreaktorin sisällä olevat mikrokanavat luovat turvallisen ympäristön synteesille. Aspen plus – simulointiohjelmalla mallinnettiin ja simulointiin suoran prosessin kriittisiä virtoja mikroreaktorissa. Tarkoituksena oli löytää virrat, joissa kulkee mahdollisesti räjähtävä kaasuseos. Kaasumaiset prosessivirrat ovat kriittisimmät vetyperoksidin suorassa synteesissä, koska ne aiheuttavat todennäköisemmin räjähdyksen kuin nestemäiset prosessivirrat. Kaikkein eniten prosessiturvallisuutta uhkaavat ainevirrat ennen ja jälkeen mikroreaktoria.
Resumo:
Advanced oxidation processes (AOPs) have been studied and developed to suffice the effective removal of refractory and toxic compounds in polluted water. The quality and cost of wastewater treatment need improvements, and electric discharge technology has a potential to make a significant difference compared to other established AOPs based on energy efficiency. The generation of active oxidant species such as ozone and hydroxyl radicals by high voltage discharge is a relatively new technology for water treatment. Gas-phase pulsed corona discharge (PCD), where a treated aqueous solution is dispersed between corona-producing electrodes free of the dielectric barriers, was developed as an alternative approach to the problem. The short living radicals and ozone formed in the gas phase and at the gas-liquid interface react with dissolved impurities. PCD equipment has a relatively simple configuration, and with the reactor in an enclosed compartment, it is insensitive towards gas humidity and does not need the gas transport. In this thesis, PCD was used to study and evaluate the energy efficiency for degrading various organic compounds, as well as the chemistry of the oxidation products formed. The experiments investigate the aqueous oxidation of phenol, humic substances, pharmaceutical compounds (paracetamol, ibuprofen, indomethacin, salicylic acids, -estradiol), as well as lignin degradation and transformation to aldehydes. The study aims to establish the influence of initial concentration of the target pollutant, the pulsed discharge parameters, gas phase composition and the pH on the oxidation kinetics and the efficiency. Analytical methods to measure the concentrations of the target compounds and their by-products include HPLC, spectrophotometry, TOC and capillary electrophoresis. The results of the research included in this summary are presented in the attached publications and manuscripts accepted for publication. Pulsed corona discharge proved to be highly effective in oxidizing each of the target compounds, surpassing the closest competitor, conventional ozonation. The increase in oxidation efficiencies for some compounds in oxygen media and at lower pulse repetition frequencies shows a significant role of ozone. The role of the ·OH radicals was established in the surface reactions. The main oxidation products, formation of nitrates, and the lignin transformation were quantified. A compound specific approach is suggested for optimization of the PCD parameters that have the most significant impact on the oxidation energy efficiency because of the different characteristics and responses of the target compound to the oxidants, as well as different admixtures that are present in the wastewater. Further studies in the method’s safety (nitration and nitrosation of organic compounds, nitrite and nitrate formation enhancement) are needed for promoting the method.
Resumo:
The oxidation potential of pulsed corona discharge concerning aqueous impurities is limited in respect to certain refractory compounds. This may be enhanced in combination of the discharge with catalysis/photocatalysis as developed in homogeneous gas-phase reactions. The objective of the work consists of testing the hypothesis of oxidation potential enhancement in combination of the discharge with TiO2 photocatalysis applied to aqueous solutions of refractory oxalate. Meglumine acridone acetate was included for meeting the practical needs. The experimental research was undertaken into oxidation of aqueous solutions under conditions of various target pollutant concentrations, pH and the pulse repetition rate with plain electrodes and the electrodes with TiO2 attached to their surface. The results showed no positive influence of the photocatalyst, the pollutants were oxidized with the rate identical within the accuracy of measurements. The possible explanation for the observed inefficiency may include low UV irradiance, screening effect of water and generally low oxidation rate in photocatalytic reactions. Further studies might include combination of electric discharge with ozone decomposition/radical formation catalysts.
Resumo:
In this study, cantilever-enhanced photoacoustic spectroscopy (CEPAS) was applied in different drug detection schemes. The study was divided into two different applications: trace detection of vaporized drugs and drug precursors in the gas-phase, and detection of cocaine abuse in hair. The main focus, however, was the study of hair samples. In the gas-phase, methyl benzoate, a hydrolysis product of cocaine hydrochloride, and benzyl methyl ketone (BMK), a precursor of amphetamine and methamphetamine were investigated. In the solid-phase, hair samples from cocaine overdose patients were measured and compared to a drug-free reference group. As hair consists mostly of long fibrous proteins generally called keratin, proteins from fingernails and saliva were also studied for comparison. Different measurement setups were applied in this study. Gas measurements were carried out using quantum cascade lasers (QLC) as a source in the photoacoustic detection. Also, an external cavity (EC) design was used for a broader tuning range. Detection limits of 3.4 particles per billion (ppb) for methyl benzoate and 26 ppb for BMK in 0.9 s were achieved with the EC-QCL PAS setup. The achieved detection limits are sufficient for realistic drug detection applications. The measurements from drug overdose patients were carried out using Fourier transform infrared (FTIR) PAS. The drug-containing hair samples and drug-free samples were both measured with the FTIR-PAS setup, and the measured spectra were analyzed statistically with principal component analysis (PCA). The two groups were separated by their spectra with PCA and proper spectral pre-processing. To improve the method, ECQCL measurements of the hair samples, and studies using photoacoustic microsampling techniques, were performed. High quality, high-resolution spectra with a broad tuning range were recorded from a single hair fiber. This broad tuning range of an EC-QCL has not previously been used in the photoacoustic spectroscopy of solids. However, no drug detection studies were performed with the EC-QCL solid-phase setup.
Resumo:
Ion mobility spectrometry (IMS) is a straightforward, low cost method for fast and sensitive determination of organic and inorganic analytes. Originally this portable technique was applied to the determination of gas phase compounds in security and military use. Nowadays, IMS has received increasing attention in environmental and biological analysis, and in food quality determination. This thesis consists of literature review of suitable sample preparation and introduction methods for liquid matrices applicable to IMS from its early development stages to date. Thermal desorption, solid phase microextraction (SPME) and membrane extraction were examined in experimental investigations of hazardous aquatic pollutants and potential pollutants. Also the effect of different natural waters on the extraction efficiency was studied, and the utilised IMS data processing methods are discussed. Parameters such as extraction and desorption temperatures, extraction time, SPME fibre depth, SPME fibre type and salt addition were examined for the studied sample preparation and introduction methods. The observed critical parameters were extracting material and temperature. The extraction methods showed time and cost effectiveness because sampling could be performed in single step procedures and from different natural water matrices within a few minutes. Based on these experimental and theoretical studies, the most suitable method to test in the automated monitoring system is membrane extraction. In future an IMS based early warning system for monitoring water pollutants could ensure the safe supply of drinking water. IMS can also be utilised for monitoring natural waters in cases of environmental leakage or chemical accidents. When combined with sophisticated sample introduction methods, IMS possesses the potential for both on-line and on-site identification of analytes in different water matrices.
Resumo:
The main objective of this research is to estimate and characterize heterogeneous mass transfer coefficients in bench- and pilot-scale fluidized bed processes by the means of computational fluid dynamics (CFD). A further objective is to benchmark the heterogeneous mass transfer coefficients predicted by fine-grid Eulerian CFD simulations against empirical data presented in the scientific literature. First, a fine-grid two-dimensional Eulerian CFD model with a solid and gas phase has been designed. The model is applied for transient two-dimensional simulations of char combustion in small-scale bubbling and turbulent fluidized beds. The same approach is used to simulate a novel fluidized bed energy conversion process developed for the carbon capture, chemical looping combustion operated with a gaseous fuel. In order to analyze the results of the CFD simulations, two one-dimensional fluidized bed models have been formulated. The single-phase and bubble-emulsion models were applied to derive the average gas-bed and interphase mass transfer coefficients, respectively. In the analysis, the effects of various fluidized bed operation parameters, such as fluidization, velocity, particle and bubble diameter, reactor size, and chemical kinetics, on the heterogeneous mass transfer coefficients in the lower fluidized bed are evaluated extensively. The analysis shows that the fine-grid Eulerian CFD model can predict the heterogeneous mass transfer coefficients quantitatively with acceptable accuracy. Qualitatively, the CFD-based research of fluidized bed process revealed several new scientific results, such as parametrical relationships. The huge variance of seven orders of magnitude within the bed Sherwood numbers presented in the literature could be explained by the change of controlling mechanisms in the overall heterogeneous mass transfer process with the varied process conditions. The research opens new process-specific insights into the reactive fluidized bed processes, such as a strong mass transfer control over heterogeneous reaction rate, a dominance of interphase mass transfer in the fine-particle fluidized beds and a strong chemical kinetic dependence of the average gas-bed mass transfer. The obtained mass transfer coefficients can be applied in fluidized bed models used for various engineering design, reactor scale-up and process research tasks, and they consequently provide an enhanced prediction accuracy of the performance of fluidized bed processes.
Resumo:
The research on the interaction between radiation and biomolecules pro-vides valuable information for both radiobiology and molecular physics. While radiobiology is interested in the damage inflicted on the molecule upon irradiation, molecular physics exploits these studies to obtain infor-mation about the physical properties of the molecule and the quantum me-chanical processes involved in the interaction. This thesis work investigated how a small change in the structure or composition of a biomolecule changes the response of the molecule to ioniz-ing radiation. Altogether eight different biomolecules were studied: nucleo-sides uridine, 5-methyluridine and thymidine; amino acids alanine, cysteine and serine; and halogenated acetic acids chloro- and bromoacetic acids. The effect of ionizing radiation on these molecules was studied on molecular level, investigating the samples in gas phase. Synchrotron radiation of VUV or soft x-ray range was used to ionize sample molecules, and the subsequent fragmentation processes were investigated with ion mass spectroscopy and ion-ion-electron coincidence spectroscopy. The comparison between the three nucleosides revealed that adding or removing a single functional group can affect not only the bonds from which the molecule ruptures upon ionization but also the charge localiza-tion in the formed fragments. Studies on amino acids and halogenated acetic acids indicated that one simple substitution in the molecule can dramatical-ly change the extent of fragmentation. This thesis work also demonstrates that in order to steer the radiation-induced fragmentation of the molecules, it is not always necessary to alter the amount of energy deposited on the molecules but selecting a suitable substitution may suffice.