998 resultados para Gap map
Resumo:
A novel PBG cell based on micromachining of Silicon using wet anisotropic etching has been considered. Since this is based on etching of the Silicon substrate, it is amenable to fabrication with standard Silicon processes and integration with millimeter wave circuits. We characterize this kind of PBG cell by full wave simulations using a time domain code. For the purpose of characterization, the scenario of a 50 ohm microstrip line placed on a Silicon substrate which is anisotropically etched to create patterns with sloping walls is considered. This is shown to produce the well known PBG response of stop bands in certain frequency bands. We look at the variation in the transmission coefficient (S-21) response as the number of periods, length based average fill factor and depth of micromachining are varied. One application of a low pass filter has been proposed and simulated results are given.
Resumo:
An analytical treatment of performance analysis of guidance laws is possible only in simplistic scenarios. As the complexity of the guidance system increases, a search for analytical solutions becomes quite impractical. In this paper, a new performance measure, based upon the notion of a timescale gap that can be computed through numerical simulations, is developed for performance analysis of guidance laws. Finite time Lyapunov exponents are used to define the timescale gap. It is shown that the timescale gap can be used for quantification of the rate of convergence of trajectories to the collision course. Comparisonbetween several guidance laws, based on the timescale gap, is presented. Realistic simulations to study the effect of aerodynamicsand atmospheric variations on the timescale gap of these guidance laws are also presented.
Resumo:
We study the responses of a cultured neural network when it is exposed to epileptogenesis glutamate injury causing epilepsy and subsequent treatment with phenobarbital by constructing connectivity map of neurons using correlation matrix. This study is particularly useful in understanding the pharmaceutical drug induced changes in the neuronal network properties with insights into changes at the systems biology level. (C) 2010 American Institute of Physics. [doi:10.1063/1.3398025]
Resumo:
We show, for sufficiently high temperatures and sufficiently weak majority-carrier binding energies, that the dominant radiative transition at an isoelectronic acceptor (donor) in p-type (n-type) material consists of the recombination of singly trapped minority carriers (bound by central-cell forces) with free majority carriers attracted by a Coulomb interaction. There are two reasons why the radiative recombination rate of the free-to-bound process is greater than the bound exciton process, which dominates at lower temperatures: (i) The population of free majority-carrier states greatly exceeds that of exciton states at higher temperatures, and (ii) the oscillator strength of the free-to-bound transition is greatly enhanced by the Coulomb attraction between the free carrier and the charged isoelectronic impurity. This enhancement is important for isoelectronic centers and is easily calculable from existing exciton models. We show that the free carrier attracted by a Coulomb interaction can be viewed as a continuum excited state of the bound exciton. When we apply the results of our calculations to the GaP(Zn, O) system, we find that the major part of the room-temperature luminescence from nearest-neighbor isoelectronic Zn-O complexes results from free-to-bound recombination and not exciton recombination as has been thought previously. Recent experiments on impulse excitation of luminescence in GaP(Zn, O) are reevaluated in the light of our calculations and are shown to be consistent with a strong free-to-bound transition. For deep isoelectronic centers with weakly bound majority carriers, we predict an overwhelming dominance of the free-to-bound process at 300°K.
Resumo:
Describes a simple triggered vacuum gap developed for initiating electric arcs in vacuum which uses the property that the voltage required to breakdown a gap in vacuum in the presence of a solid insulating material is considerably less than the voltage required in the absence of such material. In this triggered vacuum gap a solid insulating material is used in the angular space between the main cathode and the concentric trigger electrode forming the auxiliary gap. Different materials like epoxy resin, Teflon (PTFE) and mica have been used. The trigger voltage was found to vary in the range 560-1840 V. The results with epoxy and Teflon were unsatisfactory because the trigger voltages showed wide scatter and the auxiliary gap was soon bridged by metal particles eroded from the electrodes. Though the trigger voltages required with mica were relatively high, consistent triggering could be obtained for a large number of trials before the auxiliary gap was bridged. This was probably due to better thermal stability of mica as compared with either epoxy or Teflon.
Resumo:
In this paper, we present a growing and pruning radial basis function based no-reference (NR) image quality model for JPEG-coded images. The quality of the images are estimated without referring to their original images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity factors such as edge amplitude, edge length, background activity and background luminance. Image quality estimation involves computation of functional relationship between HVS features and subjective test scores. Here, the problem of quality estimation is transformed to a function approximation problem and solved using GAP-RBF network. GAP-RBF network uses sequential learning algorithm to approximate the functional relationship. The computational complexity and memory requirement are less in GAP-RBF algorithm compared to other batch learning algorithms. Also, the GAP-RBF algorithm finds a compact image quality model and does not require retraining when the new image samples are presented. Experimental results prove that the GAP-RBF image quality model does emulate the mean opinion score (MOS). The subjective test results of the proposed metric are compared with JPEG no-reference image quality index as well as full-reference structural similarity image quality index and it is observed to outperform both.
Resumo:
Non-orthogonal space-time block codes (STBC) from cyclic division algebras (CDA) are attractive because they can simultaneously achieve both high spectral efficiencies (same spectral efficiency as in V-BLAST for a given number of transmit antennas) as well as full transmit diversity. Decoding of non-orthogonal STBCs with hundreds of dimensions has been a challenge. In this paper, we present a probabilistic data association (PDA) based algorithm for decoding non-orthogonal STBCs with large dimensions. Our simulation results show that the proposed PDA-based algorithm achieves near SISO AWGN uncoded BER as well as near-capacity coded BER (within 5 dB of the theoretical capacity) for large non-orthogonal STBCs from CDA. We study the effect of spatial correlation on the BER, and show that the performance loss due to spatial correlation can be alleviated by providing more receive spatial dimensions. We report good BER performance when a training-based iterative decoding/channel estimation is used (instead of assuming perfect channel knowledge) in channels with large coherence times. A comparison of the performances of the PDA algorithm and the likelihood ascent search (LAS) algorithm (reported in our recent work) is also presented.
Resumo:
In this work, using self-consistent tight-binding calculations. for the first time, we show that a direct to indirect band gap transition is possible in an armchair graphene nanoribbon by the application of an external bias along the width of the ribbon, opening up the possibility of new device applications. With the help of the Dirac equation, we qualitatively explain this band gap transition using the asymmetry in the spatial distribution of the perturbation potential produced inside the nanoribbon by the external bias. This is followed by the verification of the band gap trends with a numerical technique using Magnus expansion of matrix exponentials. Finally, we show that the carrier effective masses possess tunable sharp characters in the vicinity of the band gap transition points.
Resumo:
We comment on the paradox that seems to exist about a correlation between the size-dependent melting temperature and the forbidden energy gap of nanoparticles. By analyzing the reported expressions for the melting temperature and the band gap of nanoparticles, we conclude that there exists a relation between these two physical quantities. However, the variations of these two quantities with size for semiconductors are different from that of metals. (C) 2010 American Institute of Physics.[doi:10.1063/1.3466920].
Resumo:
It has been shown in an earlier paper that I-realizability of a unate function F of up to six variables corresponds to ' compactness ' of the plot of F on a Karnaugh map. Here, an algorithm has been presented to synthesize on a Karnaugh map a non-threahold function of up to Bix variables with the minimum number of threshold gates connected in cascade. Incompletely specified functions can also be treated. No resort to inequalities is made and no pre-processing (such as positivizing and ordering) of the given switching function is required.
Resumo:
Thermal contact conductance (TCC) measurements are made on bare and gold plated (<= 0.5 mu m) oxygen free high conductivity (OFHC) Cu and brass contacts in vacuum, nitrogen, and argon environments. It is observed that the TCC in gaseous environment is significantly higher than that in vacuum due to the enhanced thermal gap conductance. It is found that for a given contact load and gas pressure, the thermal gap conductance for bare OFHC Cu contacts is higher than that for gold plated contacts. It is due to the difference in the molecular weights of copper and gold, which influences the exchange of kinetic energy between the gas molecules and contact surfaces. Furthermore, the gap conductance is found to increase with increasing thickness of gold plating. Topography measurements and scanning electron microscopy (SEM) analysis of contact surfaces revealed that surfaces become smoother with increasing gold plating thickness, thus resulting in smaller gaps and consequently higher gap conductance. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: GPS technology enables the visualisation of a map reader s location on a mobile map. Earlier research on the cognitive aspects of map reading identified that searching for map-environment points is an essential element for the process of determining one s location on a mobile map. Map-environment points refer to objects that are visualized on the map and are recognizable in the environment. However, because the GPS usually adds only one point to the map that has a relation to the environment, it does not provide a sufficient amount of information for self-location. The aim of the present thesis was to assess the effect of GPS on the cognitive processes involved in determining one s location on a map. Methods: The effect of GPS on self-location was studied in a field experiment. The subjects were shown a target on a mobile map, and they were asked to point in the direction of the target. In order for the map reader to be able to deduce the direction of the target, he/she has to locate himself/herself on the map. During the pointing tasks, the subjects were asked to think aloud. The data from the experiment were used to analyze the effect of the GPS on the time needed to perform the task. The subjects verbal data was used to assess the effect of the GPS on the number of landmark concepts mentioned during a task (landmark concepts are words referring to objects that can be recognized both on the map and in the environment). Results and conclusions: The results from the experiment indicate that the GPS reduces the time needed to locate oneself on a map. The analysis of the verbal data revealed that the GPS reduces the number of landmark concepts in the protocols. The findings suggest that the GPS guides the subject s search for the map-environment points and narrows the area on the map that must be searched for self-location.
Resumo:
The hot deformation characteristics of alpha-zirconium in the temperature range of 650 °C to 850 °C and in the strain-rate range of 10-3 to 102 s-1 are studied with the help of a power dissipation map developed on the basis of the Dynamic Materials Model.[7,8,9] The processing map describes the variation of the efficiency of power dissipation (η =2m/m + 1) calculated on the basis of the strain-rate sensitivity parameter (m), which partitions power dissipation between thermal and microstructural means. The processing map reveals a domain of dynamic recrystallization in the range of 730 °C to 850 °C and 10−2 to 1−1 with its peak efficiency of 40 pct at 800 °C and 0.1 s-1 which may be considered as optimum hot-working parameters. The characteristics of dynamic recrystallization are similar to those of static recrystallization regarding the sigmoidal variation of grain size (or hardness) with temperature, although the dynamic recrystallization temperature is much higher. When deformed at 650 °C and 10-3 s-1 texture-induced dynamic recovery occurred, while at strain rates higher than 1 s-1, alpha-zirconium exhibits microstructural instabilities in the form of localized shear bands which are to be avoided in processing.
Resumo:
The nonlinear current voltage characteristics of a point contact convey information about various excitations in the metal. We have made a poin~ contact study on a superconductor to see the band gap and on a normal metal to see Ihe transport characteristics.